强连通分量Kosaraju
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
using namespace std;
const int maxn=1e5+;
const int maxm=2e5+;
inline int read(){
int a = ; bool b = ; char x = getchar();
while(x<''||''<x){
if(x=='-')b=;
x=getchar();
}
while(''<=x && x<=''){
a=(a<<)+(a<<)+x-'';
x=getchar();
}
return b ? a : -a ;
}
int n,m;
int first[maxn][],next[maxm][],to[maxm][],end[maxn];
int edge_count[];
inline void add(int x,int y,bool b){
edge_count[b]++;
to[ edge_count[b] ][b]=y;
next[ edge_count[b] ][b]=first[x][b];
first[x][b]=edge_count[b];
}
int vis[maxn];
int Time=;//时间戳
void dfs_one(int x){
vis[x]=;
for(int i=first[x][];i;i=next[i][]){
if(!vis[ to[i][] ])dfs_one(to[i][]);
}
end[++Time]=x;
}
int temp=,cnt[maxn];
void dfs_two(int x){
vis[x]=temp;
cnt[temp]++;
for(int i=first[x][];i;i=next[i][]){
if(vis[ to[i][] ])continue;
dfs_two(to[i][]);
}
}
//0->正向 ,1->反向
int main()
{
n=read();m=read();
for(int i=,a,b;i<=m;i++){
a=read();b=read();
add(a,b,);add(b,a,);
}
for(int i=;i<=n;i++){if(!vis[i])dfs_one(i);}
memset(vis,,sizeof(vis));
for(int i=n;i;i--){
if(vis[ end[i] ])continue;
temp++;
dfs_two(end[i]);
}
for(int i=;i<=n;i++){
if(cnt[ vis[i] ]>)printf("T\n");
else printf("F\n");
}
return ;
}
强连通分量Kosaraju的更多相关文章
- POJ 2186 Popular Cows(强连通分量Kosaraju)
http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标 ...
- 有向图的强连通分量——kosaraju算法
一.前人种树 博客:Kosaraju算法解析: 求解图的强连通分量
- 模板 - 图论 - 强连通分量 - Kosaraju算法
这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点. 算法复杂度: Kosa ...
- 模板 - 强连通分量 - Kosaraju
Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis ...
- 强连通分量-----Kosaraju
芝士: 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connect ...
- 图的强连通分量-Kosaraju算法
输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vec ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 图论-求有向图的强连通分量(Kosaraju算法)
求有向图的强连通分量 Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...
- POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 23445 Accepted: 9605 Des ...
随机推荐
- JSP元素介绍
1.HTML注释 <!--这个HTML注释--> 2.JSP注释 <% --这是JSP注释-- %> 3.声明 用于在页面中定义变量或方法 <% ! String use ...
- 洛谷 P1494 [国家集训队] 小Z的袜子
题目概述: 小Z把N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬. 你的任务 ...
- NOIP 2019游记
Update on 2019.4.20 禁赛预定
- NOIP 2019 RP++
\[\huge NOIP^{2019}_{RP++}\] \[\huge NOIP^{2019}_{Score++}\]
- Linux 三剑客(Awk、Sed、Grep)
grep/egrep 主要作用:给搜索过滤出来的内容加上颜色和排除功能 常用参数 -V 打印grep的版本号 -E 解释PATTERN作为扩展正则表达式,也就相当于使用egrep. 或操作 -F 解释 ...
- 【Network】优化问题——Label Smoothing
滴:转载引用请注明哦[握爪]https://www.cnblogs.com/zyrb/p/9699168.html 今天来进行讨论深度学习中的一种优化方法Label smoothing Regular ...
- 强连通分量(Kosaraju)
//P2002解题思路: //先求SCC,缩点后,转换为DAG(有向无环图) //在DAG上统计入度为0的scc数量即可 //Kosaraju时间复杂度:O(N+E) //两次DFS,2N,图的转置E ...
- matplotlib库的简单应用
matplotlib库 import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font.family']='Si ...
- 扩展欧几里得(exgcd)与同余详解
exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子, ...
- docker学习------记录centos7.5下docker安装更换国内源的处理过程
一.centos7.5下更换阿里源 1.装好centos7.5镜像,将yum源更换为阿里源 第一步:刚出的centos7.5是解析不到阿里的东西的,所以找了台centos7.4,下载一些包 (1) 下 ...