1、环境配置

tensorflow1.12.0

Opencv3.4.2

keras

pycharm

2、配置yolov3

  • 下载yolov3代码:https://github.com/qqwweee/keras-yolo3
  • 下载权重:https://pjreddie.com/media/files/yolov3.weights,并将权重文件放在keras-yolo3-master文件下
  • 执行如下命令将darknet下的yolov3配置文件转换成keras适用的h5文件。

    python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

更改了一下代码:重新编写了一个测试代码object_detection_yolo.py

# This code is written at BigVision LLC. It is based on the OpenCV project. It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html

# Usage example:  python3 object_detection_yolo.py --video=run.mp4
# python3 object_detection_yolo.py --image=bird.jpg import cv2 as cv
import argparse
import sys
import numpy as np
import os.path # Initialize the parameters
confThreshold = 0.5 # Confidence threshold
nmsThreshold = 0.4 #Non-maximum suppression threshold
inpWidth = 416 #Width of network's input image
inpHeight = 416 #Height of network's input image parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
parser.add_argument('--image', help='Path to image file.')
parser.add_argument('--video', help='Path to video file.')
args = parser.parse_args() # Load names of classes
classesFile = "model_data/coco_classes.txt";
classes = None
# with open(classesFile, 'rt') as f:
# classes = f.read().rstrip('\n').split('\n')
classes_path = os.path.expanduser(classesFile)
with open(classes_path) as f:
class_names = f.readlines()
classes = [c.strip() for c in class_names] # Give the configuration and weight files for the model and load the network using them.
modelConfiguration = "yolov3.cfg";
modelWeights = "yolov3.weights"; net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) # Get the names of the output layers
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Draw the predicted bounding box
def drawPred(classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3) label = '%.2f' % conf # Get the label for the class name and its confidence
if classes:
assert(classId < len(classes))
label = '%s:%s' % (classes[classId], label) #Display the label at the top of the bounding box
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
cv.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED)
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1) # Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1] classIds = []
confidences = []
boxes = []
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
drawPred(classIds[i], confidences[i], left, top, left + width, top + height) # Process inputs
winName = 'Deep learning object detection in OpenCV'
#cv.namedWindow(winName, cv.WINDOW_NORMAL) outputFile = "yolo_out_py.avi"
if (args.image):
# Open the image file
if not os.path.isfile(args.image):
print("Input image file ", args.image, " doesn't exist")
sys.exit(1)
cap = cv.VideoCapture(args.image)
outputFile = args.image[:-4]+'_yolo_out_py.jpg'
elif (args.video):
# Open the video file
if not os.path.isfile(args.video):
print("Input video file ", args.video, " doesn't exist")
sys.exit(1)
cap = cv.VideoCapture(args.video)
outputFile = args.video[:-4]+'_yolo_out_py.avi'
else:
# Webcam input
cap = cv.VideoCapture(0) # Get the video writer initialized to save the output video
if (not args.image):
vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 30, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv.CAP_PROP_FRAME_HEIGHT)))) while cv.waitKey(1) < 0: # get frame from the video
hasFrame, frame = cap.read() # Stop the program if reached end of video
if not hasFrame:
print("Done processing !!!")
print("Output file is stored as ", outputFile)
cv.waitKey(3000)
break # Create a 4D blob from a frame.
blob = cv.dnn.blobFromImage(frame, 1/255, (inpWidth, inpHeight), [0,0,0], 1, crop=False) # Sets the input to the network
net.setInput(blob) # Runs the forward pass to get output of the output layers
outs = net.forward(getOutputsNames(net)) # Remove the bounding boxes with low confidence
postprocess(frame, outs) # Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) # Write the frame with the detection boxes
if (args.image):
cv.imwrite(outputFile, frame.astype(np.uint8));
else:
vid_writer.write(frame.astype(np.uint8)) #cv.imshow(winName, frame)

3、用自己的数据集训练

  • 在工程下新建一个文件夹VOCdevkit,结构与VOC数据集格式保持一致,目录结构如下所示:

将自己的数据图片放入JPEFImages文件中,

  • 生成ImageSet/Main/4个文件,在VOC2007下新建一个test.py文件:
import os

import random

trainval_percent = 0.2

train_percent = 0.8

xmlfilepath = 'Annotations'

txtsavepath = 'ImageSets\Main'

total_xml = os.listdir(xmlfilepath)

num = len(total_xml)

list = range(num)

tv = int(num * trainval_percent)

tr = int(tv * train_percent)

trainval = random.sample(list, tv)

train = random.sample(trainval, tr)

ftrainval = open('ImageSets/Main/trainval.txt', 'w')

ftest = open('ImageSets/Main/test.txt', 'w')

ftrain = open('ImageSets/Main/train.txt', 'w')

fval = open('ImageSets/Main/val.txt', 'w')

for i in list:

    name = total_xml[i][:-4] + '\n'

    if i in trainval:

        ftrainval.write(name)

        if i in train:

            ftest.write(name)

        else:

            fval.write(name)

    else:

        ftrain.write(name)

ftrainval.close()

ftrain.close()

fval.close()

ftest.close()

运行代码之后,生成如下文件,VOC2007数据集制作完成。

  • 生成yolo3所需的train.txt,val.txt,test.txt

    生成的数据集不能供yolov3直接使用。需要运行voc_annotation.py(迁移项目时必须重新运行,涉及路径问题) ,classes以检测两个类为例(redlight和greenlight),在voc_annotation.py需改你的数据集为:

    运行之后,生成如下三个文件:

文件内容如图所示:

  • 修改参数文件yolo3.cfg

    打开yolo3.cfg文件。搜索yolo(共出现三次),每次按下图都要修改:

filter:3*(5+len(classes))

classes:你要训练的类别数(我这里是训练两类)

random:原来是1,显存小改为0

  • 修改model_data下的voc_classes.txt为自己训练的类别

  • 修改train.py代码(用下面代码直接替换原来的代码)
"""

Retrain the YOLO model for your own dataset.

"""

import numpy as np

import keras.backend as K

from keras.layers import Input, Lambda

from keras.models import Model

from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping

from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss

from yolo3.utils import get_random_data

def _main():

    annotation_path = '2007_train.txt'

    log_dir = 'logs/000/'

    classes_path = 'model_data/voc_classes.txt'

    anchors_path = 'model_data/yolo_anchors.txt'

    class_names = get_classes(classes_path)

    anchors = get_anchors(anchors_path)

    input_shape = (416,416) # multiple of 32, hw

    model = create_model(input_shape, anchors, len(class_names) )

    train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir)

def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):

    model.compile(optimizer='adam', loss={

        'yolo_loss': lambda y_true, y_pred: y_pred})

    logging = TensorBoard(log_dir=log_dir)

    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",

        monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)

    batch_size = 10

    val_split = 0.1

    with open(annotation_path) as f:

        lines = f.readlines()

    np.random.shuffle(lines)

    num_val = int(len(lines)*val_split)

    num_train = len(lines) - num_val

    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

    model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),

            steps_per_epoch=max(1, num_train//batch_size),

            validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),

            validation_steps=max(1, num_val//batch_size),

            epochs=500,

            initial_epoch=0)

    model.save_weights(log_dir + 'trained_weights.h5')

def get_classes(classes_path):

    with open(classes_path) as f:

        class_names = f.readlines()

    class_names = [c.strip() for c in class_names]

    return class_names

def get_anchors(anchors_path):

    with open(anchors_path) as f:

        anchors = f.readline()

    anchors = [float(x) for x in anchors.split(',')]

    return np.array(anchors).reshape(-1, 2)

def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,

            weights_path='model_data/yolo_weights.h5'):

    K.clear_session() # get a new session

    image_input = Input(shape=(None, None, 3))

    h, w = input_shape

    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \

        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)

    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:

        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)

        print('Load weights {}.'.format(weights_path))

        if freeze_body:

            # Do not freeze 3 output layers.

            num = len(model_body.layers)-7

            for i in range(num): model_body.layers[i].trainable = False

            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',

        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(

        [*model_body.output, *y_true])

    model = Model([model_body.input, *y_true], model_loss)

    return model

def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):

    n = len(annotation_lines)

    np.random.shuffle(annotation_lines)

    i = 0

    while True:

        image_data = []

        box_data = []

        for b in range(batch_size):

            i %= n

            image, box = get_random_data(annotation_lines[i], input_shape, random=True)

            image_data.append(image)

            box_data.append(box)

            i += 1

        image_data = np.array(image_data)

        box_data = np.array(box_data)

        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)

        yield [image_data, *y_true], np.zeros(batch_size)

def data_generator_wrap(annotation_lines, batch_size, input_shape, anchors, num_classes):

    n = len(annotation_lines)

    if n==0 or batch_size<=0: return None

    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)

if __name__ == '__main__':

    _main()

替换完成后,千万千万值得注意的是,因为程序中有logs/000/目录,你需要创建这样一个目录,这个目录的作用就是存放自己的数据集训练得到的模型。不然程序运行到最后会因为找不到该路径而发生错误。

第十一节,利用yolov3训练自己的数据集的更多相关文章

  1. 利用YOLOV3训练自己的数据

    写在前面:YOLOV3只有修改了源码才需要重新make,而且make之前要先make clean. 一.准备数据 在/darknet/VOCdevkit1下建立文件夹VOC2007. voc2007文 ...

  2. Win10中用yolov3训练自己的数据集全过程(VS、CUDA、CUDNN、OpenCV配置,训练和测试)

    在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2. ...

  3. YoLov3训练自己的数据集

    工具:labelimg.MobaXterm 1.标注自己的数据集.用labelimg进行标注,保存后会生成与所标注图片文件名相同的xml文件,如图.我们标注的是井盖和路边栏,名称分了NoManhole ...

  4. Win7+keras+tensorflow使用YOLO-v3训练自己的数据集

    一.下载和测试模型 1. 下载YOLO-v3 git clone https://github.com/qqwweee/keras-yolo3.git 这是在Ubuntu里的命令,windows直接去 ...

  5. Ubuntu16.04中用yolov3训练自己的数据集

    一.配置yolo v3 参考yolo v3官网https://pjreddie.com/darknet/yolo/ 下载darknet后进行编译: git clone https://github.c ...

  6. 如何使用yolov3训练自己的数据集

    博客主要结构 1. 如何在ubuntu18.04上安装yolo 2 .如何配置yolov3 3 .如何制作自己的训练集测试集 4 .如何在自己的数据集上运行yolov3 1. 在ubuntu18.04 ...

  7. 第三百七十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现我的搜索以及热门搜索

    第三百七十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现我的搜索以及热门 我的搜素简单实现原理我们可以用js来实现,首先用js获取到 ...

  8. 第三百一十一节,Django框架,Form表单验证

    第三百一十一节,Django框架,Form表单验证 表单提交 html <!DOCTYPE html> <html lang="en"> <head& ...

  9. centos LAMP第三部分php,mysql配置 php配置文件 配置php的error_log 配置php的open_basedir 安装php的扩展模块 phpize mysql配置第二十一节课

    centos   LAMP第三部分php,mysql配置 php配置文件   配置php的error_log  配置php的open_basedir 安装php的扩展模块 phpize  mysql配 ...

随机推荐

  1. JDK源码分析(10)之 Hashtable 相关

    本文的目的并不是让你对Hashtable更加了解,然后灵活运用:因为Hashtable的一个历史遗留的类,目前并不建议使用,所以本文主要和HashMap对比,感受同样功能的不同实现,知道什么是好的代码 ...

  2. Spring源码情操陶冶-tx:advice解析器

    承接Spring源码情操陶冶-自定义节点的解析.本节关于事务进行简单的解析 spring配置文件样例 简单的事务配置,对save/delete开头的方法加事务,get/find开头的设置为不加事务只读 ...

  3. 【细语】C#之扩展方法原理及其使用

    1.写在前面 今天群里一个小伙伴问了这样一个问题,扩展方法与实例方法的执行顺序是什么样子的,谁先谁后(这个问题会在文章结尾回答).所以写了这边文章,力图从原理角度解释扩展方法及其使用. 以下为主要内容 ...

  4. Python之文件和目录操作

    1.文件基本操作 python内置了打开文件的函数open(),使用规则如下:   File_object=open(filename[,access_mode][,buffering]) Filen ...

  5. 【.NET Core项目实战-统一认证平台】第十六章 网关篇-Ocelot集成RPC服务

    [.NET Core项目实战-统一认证平台]开篇及目录索引 一.什么是RPC RPC是"远程调用(Remote Procedure Call)"的一个名称的缩写,并不是任何规范化的 ...

  6. Spring框架基础(下)

    log4J 导入log4J.jar 创建log4J.properties # Create a file called log4j.properties as shown below and plac ...

  7. JavaScript 为什么要有 Symbol 类型?

    Symbols 是 ES6 引入了一个新的数据类型 ,它为 JS 带来了一些好处,尤其是对象属性时. 但是,它们能为我们做些字符串不能做的事情呢? 在深入探讨 Symbol 之前,让我们先看看一些 J ...

  8. Fundebug后端Java异常监控插件更新至0.3.1,修复Maven下载失败的问题

    摘要: 0.3.1修复Maven下载失败的问题. 监控Java应用 1. pom.xml 配置fundebug-java依赖 <dependency> <groupId>com ...

  9. splay详解(二)

    前言 在上一节中,我们讲述了Splay的核心操作rotate与splay 本节我会教大家如何用这两个函数实现各种强大的功能 为了方便讲解,我们拿这道题做例题来慢慢分析 利用splay实现各种功能 首先 ...

  10. 统计字符串中字符出现的次数(||和&&的区别)

    var str = "ProsperLee"; // || 返回第一个为真的表达式的值,若全为假则返回最后一个表达式的值 // && 返回第一个为假的表达式的值,若 ...