1、环境配置

tensorflow1.12.0

Opencv3.4.2

keras

pycharm

2、配置yolov3

  • 下载yolov3代码:https://github.com/qqwweee/keras-yolo3
  • 下载权重:https://pjreddie.com/media/files/yolov3.weights,并将权重文件放在keras-yolo3-master文件下
  • 执行如下命令将darknet下的yolov3配置文件转换成keras适用的h5文件。

    python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

更改了一下代码:重新编写了一个测试代码object_detection_yolo.py

# This code is written at BigVision LLC. It is based on the OpenCV project. It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html

# Usage example:  python3 object_detection_yolo.py --video=run.mp4
# python3 object_detection_yolo.py --image=bird.jpg import cv2 as cv
import argparse
import sys
import numpy as np
import os.path # Initialize the parameters
confThreshold = 0.5 # Confidence threshold
nmsThreshold = 0.4 #Non-maximum suppression threshold
inpWidth = 416 #Width of network's input image
inpHeight = 416 #Height of network's input image parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
parser.add_argument('--image', help='Path to image file.')
parser.add_argument('--video', help='Path to video file.')
args = parser.parse_args() # Load names of classes
classesFile = "model_data/coco_classes.txt";
classes = None
# with open(classesFile, 'rt') as f:
# classes = f.read().rstrip('\n').split('\n')
classes_path = os.path.expanduser(classesFile)
with open(classes_path) as f:
class_names = f.readlines()
classes = [c.strip() for c in class_names] # Give the configuration and weight files for the model and load the network using them.
modelConfiguration = "yolov3.cfg";
modelWeights = "yolov3.weights"; net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) # Get the names of the output layers
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Draw the predicted bounding box
def drawPred(classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3) label = '%.2f' % conf # Get the label for the class name and its confidence
if classes:
assert(classId < len(classes))
label = '%s:%s' % (classes[classId], label) #Display the label at the top of the bounding box
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
cv.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED)
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1) # Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1] classIds = []
confidences = []
boxes = []
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
drawPred(classIds[i], confidences[i], left, top, left + width, top + height) # Process inputs
winName = 'Deep learning object detection in OpenCV'
#cv.namedWindow(winName, cv.WINDOW_NORMAL) outputFile = "yolo_out_py.avi"
if (args.image):
# Open the image file
if not os.path.isfile(args.image):
print("Input image file ", args.image, " doesn't exist")
sys.exit(1)
cap = cv.VideoCapture(args.image)
outputFile = args.image[:-4]+'_yolo_out_py.jpg'
elif (args.video):
# Open the video file
if not os.path.isfile(args.video):
print("Input video file ", args.video, " doesn't exist")
sys.exit(1)
cap = cv.VideoCapture(args.video)
outputFile = args.video[:-4]+'_yolo_out_py.avi'
else:
# Webcam input
cap = cv.VideoCapture(0) # Get the video writer initialized to save the output video
if (not args.image):
vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 30, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv.CAP_PROP_FRAME_HEIGHT)))) while cv.waitKey(1) < 0: # get frame from the video
hasFrame, frame = cap.read() # Stop the program if reached end of video
if not hasFrame:
print("Done processing !!!")
print("Output file is stored as ", outputFile)
cv.waitKey(3000)
break # Create a 4D blob from a frame.
blob = cv.dnn.blobFromImage(frame, 1/255, (inpWidth, inpHeight), [0,0,0], 1, crop=False) # Sets the input to the network
net.setInput(blob) # Runs the forward pass to get output of the output layers
outs = net.forward(getOutputsNames(net)) # Remove the bounding boxes with low confidence
postprocess(frame, outs) # Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) # Write the frame with the detection boxes
if (args.image):
cv.imwrite(outputFile, frame.astype(np.uint8));
else:
vid_writer.write(frame.astype(np.uint8)) #cv.imshow(winName, frame)

3、用自己的数据集训练

  • 在工程下新建一个文件夹VOCdevkit,结构与VOC数据集格式保持一致,目录结构如下所示:

将自己的数据图片放入JPEFImages文件中,

  • 生成ImageSet/Main/4个文件,在VOC2007下新建一个test.py文件:
import os

import random

trainval_percent = 0.2

train_percent = 0.8

xmlfilepath = 'Annotations'

txtsavepath = 'ImageSets\Main'

total_xml = os.listdir(xmlfilepath)

num = len(total_xml)

list = range(num)

tv = int(num * trainval_percent)

tr = int(tv * train_percent)

trainval = random.sample(list, tv)

train = random.sample(trainval, tr)

ftrainval = open('ImageSets/Main/trainval.txt', 'w')

ftest = open('ImageSets/Main/test.txt', 'w')

ftrain = open('ImageSets/Main/train.txt', 'w')

fval = open('ImageSets/Main/val.txt', 'w')

for i in list:

    name = total_xml[i][:-4] + '\n'

    if i in trainval:

        ftrainval.write(name)

        if i in train:

            ftest.write(name)

        else:

            fval.write(name)

    else:

        ftrain.write(name)

ftrainval.close()

ftrain.close()

fval.close()

ftest.close()

运行代码之后,生成如下文件,VOC2007数据集制作完成。

  • 生成yolo3所需的train.txt,val.txt,test.txt

    生成的数据集不能供yolov3直接使用。需要运行voc_annotation.py(迁移项目时必须重新运行,涉及路径问题) ,classes以检测两个类为例(redlight和greenlight),在voc_annotation.py需改你的数据集为:

    运行之后,生成如下三个文件:

文件内容如图所示:

  • 修改参数文件yolo3.cfg

    打开yolo3.cfg文件。搜索yolo(共出现三次),每次按下图都要修改:

filter:3*(5+len(classes))

classes:你要训练的类别数(我这里是训练两类)

random:原来是1,显存小改为0

  • 修改model_data下的voc_classes.txt为自己训练的类别

  • 修改train.py代码(用下面代码直接替换原来的代码)
"""

Retrain the YOLO model for your own dataset.

"""

import numpy as np

import keras.backend as K

from keras.layers import Input, Lambda

from keras.models import Model

from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping

from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss

from yolo3.utils import get_random_data

def _main():

    annotation_path = '2007_train.txt'

    log_dir = 'logs/000/'

    classes_path = 'model_data/voc_classes.txt'

    anchors_path = 'model_data/yolo_anchors.txt'

    class_names = get_classes(classes_path)

    anchors = get_anchors(anchors_path)

    input_shape = (416,416) # multiple of 32, hw

    model = create_model(input_shape, anchors, len(class_names) )

    train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir)

def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):

    model.compile(optimizer='adam', loss={

        'yolo_loss': lambda y_true, y_pred: y_pred})

    logging = TensorBoard(log_dir=log_dir)

    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",

        monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)

    batch_size = 10

    val_split = 0.1

    with open(annotation_path) as f:

        lines = f.readlines()

    np.random.shuffle(lines)

    num_val = int(len(lines)*val_split)

    num_train = len(lines) - num_val

    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

    model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),

            steps_per_epoch=max(1, num_train//batch_size),

            validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),

            validation_steps=max(1, num_val//batch_size),

            epochs=500,

            initial_epoch=0)

    model.save_weights(log_dir + 'trained_weights.h5')

def get_classes(classes_path):

    with open(classes_path) as f:

        class_names = f.readlines()

    class_names = [c.strip() for c in class_names]

    return class_names

def get_anchors(anchors_path):

    with open(anchors_path) as f:

        anchors = f.readline()

    anchors = [float(x) for x in anchors.split(',')]

    return np.array(anchors).reshape(-1, 2)

def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,

            weights_path='model_data/yolo_weights.h5'):

    K.clear_session() # get a new session

    image_input = Input(shape=(None, None, 3))

    h, w = input_shape

    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \

        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)

    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:

        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)

        print('Load weights {}.'.format(weights_path))

        if freeze_body:

            # Do not freeze 3 output layers.

            num = len(model_body.layers)-7

            for i in range(num): model_body.layers[i].trainable = False

            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',

        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(

        [*model_body.output, *y_true])

    model = Model([model_body.input, *y_true], model_loss)

    return model

def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):

    n = len(annotation_lines)

    np.random.shuffle(annotation_lines)

    i = 0

    while True:

        image_data = []

        box_data = []

        for b in range(batch_size):

            i %= n

            image, box = get_random_data(annotation_lines[i], input_shape, random=True)

            image_data.append(image)

            box_data.append(box)

            i += 1

        image_data = np.array(image_data)

        box_data = np.array(box_data)

        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)

        yield [image_data, *y_true], np.zeros(batch_size)

def data_generator_wrap(annotation_lines, batch_size, input_shape, anchors, num_classes):

    n = len(annotation_lines)

    if n==0 or batch_size<=0: return None

    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)

if __name__ == '__main__':

    _main()

替换完成后,千万千万值得注意的是,因为程序中有logs/000/目录,你需要创建这样一个目录,这个目录的作用就是存放自己的数据集训练得到的模型。不然程序运行到最后会因为找不到该路径而发生错误。

第十一节,利用yolov3训练自己的数据集的更多相关文章

  1. 利用YOLOV3训练自己的数据

    写在前面:YOLOV3只有修改了源码才需要重新make,而且make之前要先make clean. 一.准备数据 在/darknet/VOCdevkit1下建立文件夹VOC2007. voc2007文 ...

  2. Win10中用yolov3训练自己的数据集全过程(VS、CUDA、CUDNN、OpenCV配置,训练和测试)

    在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2. ...

  3. YoLov3训练自己的数据集

    工具:labelimg.MobaXterm 1.标注自己的数据集.用labelimg进行标注,保存后会生成与所标注图片文件名相同的xml文件,如图.我们标注的是井盖和路边栏,名称分了NoManhole ...

  4. Win7+keras+tensorflow使用YOLO-v3训练自己的数据集

    一.下载和测试模型 1. 下载YOLO-v3 git clone https://github.com/qqwweee/keras-yolo3.git 这是在Ubuntu里的命令,windows直接去 ...

  5. Ubuntu16.04中用yolov3训练自己的数据集

    一.配置yolo v3 参考yolo v3官网https://pjreddie.com/darknet/yolo/ 下载darknet后进行编译: git clone https://github.c ...

  6. 如何使用yolov3训练自己的数据集

    博客主要结构 1. 如何在ubuntu18.04上安装yolo 2 .如何配置yolov3 3 .如何制作自己的训练集测试集 4 .如何在自己的数据集上运行yolov3 1. 在ubuntu18.04 ...

  7. 第三百七十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现我的搜索以及热门搜索

    第三百七十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现我的搜索以及热门 我的搜素简单实现原理我们可以用js来实现,首先用js获取到 ...

  8. 第三百一十一节,Django框架,Form表单验证

    第三百一十一节,Django框架,Form表单验证 表单提交 html <!DOCTYPE html> <html lang="en"> <head& ...

  9. centos LAMP第三部分php,mysql配置 php配置文件 配置php的error_log 配置php的open_basedir 安装php的扩展模块 phpize mysql配置第二十一节课

    centos   LAMP第三部分php,mysql配置 php配置文件   配置php的error_log  配置php的open_basedir 安装php的扩展模块 phpize  mysql配 ...

随机推荐

  1. JavaScriptCore全面解析

    本文由云+社区发表 作者:殷源,专注移动客户端开发,微软Imagine Cup中国区特等奖获得者 JavaScript越来越多地出现在我们客户端开发的视野中,从ReactNative到JSpatch, ...

  2. 第13章 切换到混合流并添加API访问 - Identity Server 4 中文文档(v1.0.0)

    在之前的快速入门中,我们探讨了API访问和用户身份验证.现在我们想把这两个部分放在一起. OpenID Connect和OAuth 2.0组合的优点在于,您可以使用单个协议和使用令牌服务进行单次交换来 ...

  3. .net 用ajaxFileUpload 上传超过20M文件设置

    1.在web.config的 <system.web>  节点里面添加   <httpRuntime targetFramework="4.5.2"  execu ...

  4. Python全栈开发之---装饰器

    1.装饰器的形成过程 import time def func1(): print('in func1') def timer(func): def inner(): start = time.tim ...

  5. 环境搭建 - Maven(Windows)

    Maven环境搭建 本文以windows7下搭建Maven-3.5.0为示例 下载Maven压缩包 网址:Maven 非C盘根目录下新建文件夹:Maven D:\Maven 在Maven目录下新建文件 ...

  6. js cookie存取

    if(getCookie('guide') == 'true'){ window.location.href='' } else { setCookie('guide','true'); } func ...

  7. 坑:微信小程序wx.request和wx.uploadFile中传参数的区别

    微信小程序中通过组件<form>提交表单的时候,在js中通过e.detail.value得到所提交表单的json格式数据.一般提交表单我们都是通过wx.request请求,提交表单数据,通 ...

  8. CSS3背景,渐变

    1,有利于代码维护,有利于使用debug进行调试打断点.2,后面三个都存在计算,所以分开写最好.背景复合属性最好的写法,background:#abcdef url() no-repeat 50px ...

  9. vmware 开启VM的硬件cpu虚拟化功能

    物理机的cpu硬件虚拟化功能,通过开启bios中的设置,而vmware中创建的虚拟机也可以开启该特性,如下. 这样的话,就直接可以基于这些VM安装openstack计算节点.控制节点.网络节点了.

  10. Android Button四种点击事件和长按事件

    项目XML代码 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:andr ...