第十一节,利用yolov3训练自己的数据集
1、环境配置
tensorflow1.12.0
Opencv3.4.2
keras
pycharm
2、配置yolov3
- 下载yolov3代码:https://github.com/qqwweee/keras-yolo3
- 下载权重:https://pjreddie.com/media/files/yolov3.weights,并将权重文件放在keras-yolo3-master文件下
执行如下命令将darknet下的yolov3配置文件转换成keras适用的h5文件。
python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
更改了一下代码:重新编写了一个测试代码object_detection_yolo.py
# This code is written at BigVision LLC. It is based on the OpenCV project. It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html # Usage example: python3 object_detection_yolo.py --video=run.mp4
# python3 object_detection_yolo.py --image=bird.jpg import cv2 as cv
import argparse
import sys
import numpy as np
import os.path # Initialize the parameters
confThreshold = 0.5 # Confidence threshold
nmsThreshold = 0.4 #Non-maximum suppression threshold
inpWidth = 416 #Width of network's input image
inpHeight = 416 #Height of network's input image parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
parser.add_argument('--image', help='Path to image file.')
parser.add_argument('--video', help='Path to video file.')
args = parser.parse_args() # Load names of classes
classesFile = "model_data/coco_classes.txt";
classes = None
# with open(classesFile, 'rt') as f:
# classes = f.read().rstrip('\n').split('\n')
classes_path = os.path.expanduser(classesFile)
with open(classes_path) as f:
class_names = f.readlines()
classes = [c.strip() for c in class_names] # Give the configuration and weight files for the model and load the network using them.
modelConfiguration = "yolov3.cfg";
modelWeights = "yolov3.weights"; net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) # Get the names of the output layers
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Draw the predicted bounding box
def drawPred(classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3) label = '%.2f' % conf # Get the label for the class name and its confidence
if classes:
assert(classId < len(classes))
label = '%s:%s' % (classes[classId], label) #Display the label at the top of the bounding box
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
cv.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED)
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1) # Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1] classIds = []
confidences = []
boxes = []
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
drawPred(classIds[i], confidences[i], left, top, left + width, top + height) # Process inputs
winName = 'Deep learning object detection in OpenCV'
#cv.namedWindow(winName, cv.WINDOW_NORMAL) outputFile = "yolo_out_py.avi"
if (args.image):
# Open the image file
if not os.path.isfile(args.image):
print("Input image file ", args.image, " doesn't exist")
sys.exit(1)
cap = cv.VideoCapture(args.image)
outputFile = args.image[:-4]+'_yolo_out_py.jpg'
elif (args.video):
# Open the video file
if not os.path.isfile(args.video):
print("Input video file ", args.video, " doesn't exist")
sys.exit(1)
cap = cv.VideoCapture(args.video)
outputFile = args.video[:-4]+'_yolo_out_py.avi'
else:
# Webcam input
cap = cv.VideoCapture(0) # Get the video writer initialized to save the output video
if (not args.image):
vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 30, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv.CAP_PROP_FRAME_HEIGHT)))) while cv.waitKey(1) < 0: # get frame from the video
hasFrame, frame = cap.read() # Stop the program if reached end of video
if not hasFrame:
print("Done processing !!!")
print("Output file is stored as ", outputFile)
cv.waitKey(3000)
break # Create a 4D blob from a frame.
blob = cv.dnn.blobFromImage(frame, 1/255, (inpWidth, inpHeight), [0,0,0], 1, crop=False) # Sets the input to the network
net.setInput(blob) # Runs the forward pass to get output of the output layers
outs = net.forward(getOutputsNames(net)) # Remove the bounding boxes with low confidence
postprocess(frame, outs) # Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) # Write the frame with the detection boxes
if (args.image):
cv.imwrite(outputFile, frame.astype(np.uint8));
else:
vid_writer.write(frame.astype(np.uint8)) #cv.imshow(winName, frame)
3、用自己的数据集训练
- 在工程下新建一个文件夹VOCdevkit,结构与VOC数据集格式保持一致,目录结构如下所示:
将自己的数据图片放入JPEFImages文件中,
生成Annotation下的文件,安装工具labelImg。安装过程可参照:
https://blog.csdn.net/u012746060/article/details/81016993,结果如下图:
- 生成ImageSet/Main/4个文件,在VOC2007下新建一个test.py文件:
import os import random trainval_percent = 0.2 train_percent = 0.8 xmlfilepath = 'Annotations' txtsavepath = 'ImageSets\Main' total_xml = os.listdir(xmlfilepath) num = len(total_xml) list = range(num) tv = int(num * trainval_percent) tr = int(tv * train_percent) trainval = random.sample(list, tv) train = random.sample(trainval, tr) ftrainval = open('ImageSets/Main/trainval.txt', 'w') ftest = open('ImageSets/Main/test.txt', 'w') ftrain = open('ImageSets/Main/train.txt', 'w') fval = open('ImageSets/Main/val.txt', 'w') for i in list: name = total_xml[i][:-4] + '\n' if i in trainval: ftrainval.write(name) if i in train: ftest.write(name) else: fval.write(name) else: ftrain.write(name) ftrainval.close() ftrain.close() fval.close() ftest.close()
运行代码之后,生成如下文件,VOC2007数据集制作完成。
生成yolo3所需的train.txt,val.txt,test.txt
生成的数据集不能供yolov3直接使用。需要运行voc_annotation.py(迁移项目时必须重新运行,涉及路径问题) ,classes以检测两个类为例(redlight和greenlight),在voc_annotation.py需改你的数据集为:
运行之后,生成如下三个文件:
文件内容如图所示:
修改参数文件yolo3.cfg
打开yolo3.cfg文件。搜索yolo(共出现三次),每次按下图都要修改:
filter:3*(5+len(classes))
classes:你要训练的类别数(我这里是训练两类)
random:原来是1,显存小改为0
- 修改model_data下的voc_classes.txt为自己训练的类别
- 修改train.py代码(用下面代码直接替换原来的代码)
""" Retrain the YOLO model for your own dataset. """ import numpy as np import keras.backend as K from keras.layers import Input, Lambda from keras.models import Model from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss from yolo3.utils import get_random_data def _main(): annotation_path = '2007_train.txt' log_dir = 'logs/000/' classes_path = 'model_data/voc_classes.txt' anchors_path = 'model_data/yolo_anchors.txt' class_names = get_classes(classes_path) anchors = get_anchors(anchors_path) input_shape = (416,416) # multiple of 32, hw model = create_model(input_shape, anchors, len(class_names) ) train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir) def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'): model.compile(optimizer='adam', loss={ 'yolo_loss': lambda y_true, y_pred: y_pred}) logging = TensorBoard(log_dir=log_dir) checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5", monitor='val_loss', save_weights_only=True, save_best_only=True, period=1) batch_size = 10 val_split = 0.1 with open(annotation_path) as f: lines = f.readlines() np.random.shuffle(lines) num_val = int(len(lines)*val_split) num_train = len(lines) - num_val print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes), steps_per_epoch=max(1, num_train//batch_size), validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes), validation_steps=max(1, num_val//batch_size), epochs=500, initial_epoch=0) model.save_weights(log_dir + 'trained_weights.h5') def get_classes(classes_path): with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False, weights_path='model_data/yolo_weights.h5'): K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \ num_anchors//3, num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, num_anchors//3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body: # Do not freeze 3 output layers. num = len(model_body.layers)-7 for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})( [*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) np.random.shuffle(annotation_lines) i = 0 while True: image_data = [] box_data = [] for b in range(batch_size): i %= n image, box = get_random_data(annotation_lines[i], input_shape, random=True) image_data.append(image) box_data.append(box) i += 1 image_data = np.array(image_data) box_data = np.array(box_data) y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) yield [image_data, *y_true], np.zeros(batch_size) def data_generator_wrap(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) if n==0 or batch_size<=0: return None return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes) if __name__ == '__main__': _main()
替换完成后,千万千万值得注意的是,因为程序中有logs/000/目录,你需要创建这样一个目录,这个目录的作用就是存放自己的数据集训练得到的模型。不然程序运行到最后会因为找不到该路径而发生错误。
第十一节,利用yolov3训练自己的数据集的更多相关文章
- 利用YOLOV3训练自己的数据
写在前面:YOLOV3只有修改了源码才需要重新make,而且make之前要先make clean. 一.准备数据 在/darknet/VOCdevkit1下建立文件夹VOC2007. voc2007文 ...
- Win10中用yolov3训练自己的数据集全过程(VS、CUDA、CUDNN、OpenCV配置,训练和测试)
在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2. ...
- YoLov3训练自己的数据集
工具:labelimg.MobaXterm 1.标注自己的数据集.用labelimg进行标注,保存后会生成与所标注图片文件名相同的xml文件,如图.我们标注的是井盖和路边栏,名称分了NoManhole ...
- Win7+keras+tensorflow使用YOLO-v3训练自己的数据集
一.下载和测试模型 1. 下载YOLO-v3 git clone https://github.com/qqwweee/keras-yolo3.git 这是在Ubuntu里的命令,windows直接去 ...
- Ubuntu16.04中用yolov3训练自己的数据集
一.配置yolo v3 参考yolo v3官网https://pjreddie.com/darknet/yolo/ 下载darknet后进行编译: git clone https://github.c ...
- 如何使用yolov3训练自己的数据集
博客主要结构 1. 如何在ubuntu18.04上安装yolo 2 .如何配置yolov3 3 .如何制作自己的训练集测试集 4 .如何在自己的数据集上运行yolov3 1. 在ubuntu18.04 ...
- 第三百七十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现我的搜索以及热门搜索
第三百七十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现我的搜索以及热门 我的搜素简单实现原理我们可以用js来实现,首先用js获取到 ...
- 第三百一十一节,Django框架,Form表单验证
第三百一十一节,Django框架,Form表单验证 表单提交 html <!DOCTYPE html> <html lang="en"> <head& ...
- centos LAMP第三部分php,mysql配置 php配置文件 配置php的error_log 配置php的open_basedir 安装php的扩展模块 phpize mysql配置第二十一节课
centos LAMP第三部分php,mysql配置 php配置文件 配置php的error_log 配置php的open_basedir 安装php的扩展模块 phpize mysql配 ...
随机推荐
- ssh-login 一键密码加密登录工具
ssh-login 1. Feature 管理多个帐号,每个帐号一个易记的 tip name,支持 tab 进行 tip name 补全,一键 ssh 登录 密码 AES 加密,密文存储密码,且只需要 ...
- 不能ssh连接ubuntu linux 服务器 secureCRT不能ssh连接服务器 不能远程ssh连接虚拟机的ubuntu linux
我是用的是secureCRT,远程连接我的虚拟机里面的ubuntu 直接报错,连接不上 1,先分别在windows上ipconfig和ubuntu上ifconfig下 互ping一下,是可以ping通 ...
- mybatis和hibernate的区别
1. hibernate是全自动,而mybatis是半自动 hibernate完全可以通过对象关系模型实现对数据库的操作,拥有完整的JavaBean对象与数据库的映射结构来自动生成sql.而mybat ...
- Spring之事件监听(观察者模型)
目录 Spring事件监听 一.事件监听案例 1.事件类 2.事件监听类 3.事件发布者 4.配置文件中注册 5.测试 二.Spring中事件监听分析 1. Spring中事件监听的结构 2. 核心角 ...
- Python迭代和解析(2):迭代初探
解析.迭代和生成系列文章:https://www.cnblogs.com/f-ck-need-u/p/9832640.html 在Python中支持两种循环格式:while和for.这两种循环的类型不 ...
- JS闭包作用域解析
什么是闭包? 简单理解,当在一个函数的外部访问函数内部定义的变量的时候就会形成一个闭包,由这个理解可以知道,当一个函数执行完成的时候,一般情况下,其作用域会被销毁,其内部定义的变量也会变得不可访问,所 ...
- Phpstudy升级到Mysql8
之前一直用的mysql5.5,最近发现Mysql8更新了很多新特性以及查询效率的提升,觉得很有必要更新下开发版本,好,废话不多说: 1.下载安装包,下载地址:mysql8.0 .如果你想要下载其它版 ...
- Kotlin for循环使用
普通for循环 for(i in 1..4){ println(i) } 结果为1234 循环四次 反序for循环 for(i in 4 downTo 1){ println(i) } 结果为4321 ...
- Android APK 签名文件MANIFEST.MF、CERT.SF、CERT.RSA分析
首先我们找一个已经签名的apk文件,修改后缀名为zip,然后解压.可以看到里面有一个META-INF文件夹,里面就是签名验证的文件.有三个文件MANIFEST.MF.CERT.SF.CERT.RSA分 ...
- [python爬虫]Requests-BeautifulSoup-Re库方案--Requests库介绍
[根据北京理工大学嵩天老师“Python网络爬虫与信息提取”慕课课程编写 文章中部分图片来自老师PPT 慕课链接:https://www.icourse163.org/learn/BIT-10018 ...