POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)
<题目链接>
题目大意:
给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走到另一个端点所需要的时间),求一个最短时间T使得在T时间内所有的牛都能进到某一牛棚里去。$(1 <= N <= 200, 1 <= M <= 1500,0 <= A_i <= 10^3, 0 <= B_i <= 10^3, 1 <= Dij <= 10^9)$。
解题分析:
很明显要二分答案,二分枚举最短的时间,然后用最大流去进行验证。将每个点$i$拆成两个点$i$和$i+n$,然后就是对于每次枚举的答案,进行重新建图,然后跑最大流,如果最大流等于所有牛的数量,则说明所有的牛都有牛棚能够停留,符合条件。建图的方法就是:超级源点向所有的点$i$连一条边,容量为i点初始牛的数量,所有点$i+n$向汇点连一条边,容量为该点牛的容量。因为点的数量很少,floyd预处理出任意两点之间的最短距离,然后对于每次枚举的时间T,最短距离小于等于T的边就加入网络,建好图之后,跑一遍最大流,进行判断。
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std; typedef long long ll;
const int N = ;
const ll INF = 1e18;
int n,m,st,ed;
int num[N],capa[N];
ll g[N][N],fullFlow; template<typename T>
inline void read(T&x){
x=;int f=;char c=getchar();
while(c<'' || c>''){ if(c=='-')f=-;c=getchar(); }
while(c>='' && c<=''){ x=x*+c-'';c=getchar(); }
x*=f;
}
struct Dinic
{
struct edge{ int from,to;ll cap,flow; };
vector<edge>es;
vector<int>G[N];
bool vis[N];
int g[N],iter[N];
void init(int n){
for(int i=; i<=n+; i++)G[i].clear();
es.clear();
}
void addedge(int from,int to,ll cap){
es.push_back((edge){from,to,cap,});
es.push_back((edge){to,from,,});
int x=es.size();
G[from].push_back(x-);
G[to].push_back(x-);
}
bool BFS(int s,int t){
memset(vis,,sizeof(vis));
queue <int> q;
vis[s]=;
g[s]=;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=; i<G[u].size(); i++){
edge &e=es[G[u][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
g[e.to]=g[u]+;
q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int u,int t,ll f){
if(u==t||f==)return f;
int numflow=,d;
for(int &i=iter[u]; i<G[u].size(); i++){
edge &e=es[G[u][i]];
if(g[u]+==g[e.to]&&(d=DFS(e.to,t,min(f,e.cap-e.flow)))>){
e.flow+=d;
es[G[u][i]^].flow-=d;
numflow+=d;
f-=d;
if(f==)break;
}
}
return numflow;
}
int Maxflow(int s,int t){
int flow=;
while(BFS(s,t)){
memset(iter,,sizeof(iter));
int d=;
while(d=DFS(s,t,INF))flow+=d;
}
return flow;
}
}dinic; bool check(ll T){ //最长的时间限制
dinic.init(N);
for(int i=;i<=n;i++){
dinic.addedge(st,i,num[i]); //源点向每个点连一条边,容量为这个点的牛的数量
dinic.addedge(i+n,ed,capa[i]); //每个点拆点之后的点向汇点连一条边,容量为这个点能够容纳牛的数量
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(g[i][j]<=T) //将符合条件的边加上
dinic.addedge(i,j+n,INF);
return dinic.Maxflow(st,ed) == fullFlow; //判断是否满流,即是否所有的牛都有牛棚住
}
inline void Floyd(){ //floyd求出任意两点之间的最短距离
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(g[i][j]>g[i][k]+g[k][j])
g[i][j]=g[i][k]+g[k][j];
}
inline void Init(){
fullFlow = ;
st=,ed=*n+;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
g[i][j]=(i==j)?:INF; //初始化任意两点之间的距离
for(int i=;i<=n;i++){
read(num[i]);read(capa[i]);
fullFlow +=num[i]; //记录所有牛的数量
}
for(int i=;i<=m;i++){
int u,v;ll w;
read(u);read(v);read(w);
g[u][v]=g[v][u]=min(g[u][v],w);
}
Floyd();
}
int main(){
while(~scanf("%d%d",&n,&m)){
Init();
ll l=,r=;//二分的上下界
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(g[i][j]<INF)
r=max(r,g[i][j]); //找到时间的上界
ll ans=-; //二分答案
while(l<=r){
ll mid=(l+r)>>;
if(check(mid))ans=mid,r=mid-;
else l=mid+;
}
printf("%lld\n",ans);
}
}
POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)的更多相关文章
- poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap
poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...
- POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)
[题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...
- POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)
Ombrophobic Bovines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11651 Accepted: 2 ...
- poj 2391 Ombrophobic Bovines(最大流+floyd+二分)
Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...
- POJ 2391 Ombrophobic Bovines(Floyd+二分+最大流)
题目链接 题意:农场有F(1 <= F <= 200)片草地用于放牛,这些草地有P(1 <= P <= 1500)连接,农场的草地上有一些避雨点,奶牛们可以在避雨点避雨,但是避 ...
- POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)
题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...
- POJ 2391 Ombrophobic Bovines
Ombrophobic Bovines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18623 Accepted: 4 ...
- poj 2391 Ombrophobic Bovines【最大流】
我%--&(¥--,调了一下午,最后发现P赋值1e5能过,赋值1e6就会TLE致死.改了一下午加一晚上然而这是为什么??? 一种常见的建图套路,首先二分答案,注意上界要取大一点,1e9是不行的 ...
- POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)
http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...
随机推荐
- Linux systemctl 命令完全指南
Systemctl是一个systemd工具,主要负责控制systemd系统和服务管理器. Systemd是一个系统管理守护进程.工具和库的集合,用于取代System V初始进程.Systemd的功能是 ...
- 基于Elastalert的安全告警剖析
https://www.freebuf.com/sectool/164591.html *本文作者:bigface,本文属 FreeBuf 原创奖励计划,未经许可禁止转载. elastalert 是一 ...
- Luogu P3227 [HNOI2013]切糕 最小割
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...
- Tomcat 服务器
1 相关概念 1 软件的架构 1 c/s 客服端/服务端 2 b/s 浏览器/服务器 2 资源的分类 1 静态资源 所有用户访问后 得到的资源是一样的 称为静态资源 html css js 静态资源可 ...
- Python并发编程之IO模型
目录 IO模型介绍 阻塞IO(blocking IO) 非阻塞IO(non-blocking IO) IO多路复用 异步IO IO模型比较分析 selectors模块 一.IO模型介绍 Stevens ...
- linux 触摸屏驱动
目录 linux 触摸屏驱动 输入子系统怎么写? 触摸屏事件 事件分类 事件设置 硬件配置 设计思路 完整程序 测试 ts_lib 使用 问题小结 title: linux 触摸屏驱动 tags: l ...
- 关于设计项目UI界面的软件工具
关于画UI界面的软件,我在网上找了几个,今天式用这几款软件还可以 1.墨刀:国产的,这个专门画APP界面的,用起来比较简单,有免费版的,要注册才能用,提供云存储,收费版的云存储空间会多一些.网站: h ...
- 基于Rabbit实现的RPC
最近在学习项目中的通用技术,其中一个是在项目中会经常使用的基于RabbitMQ实现的RPC.这里一共有三个点要学习,分别是:RPC是什么?RabbitMQ是什么?如何使用RabbitMQ实现RPC.奔 ...
- Flask Web中文教程
Flask Web中文教程:http://docs.jinkan.org/docs/flask/
- HTML(二)HTML元素(整体结构,块级元素,内联元素,结构元素,交互元素,元素嵌套规则)
HTML整体结构解释 <!DOCTYPE html> // 文件应以"<!DOCTYPE ......>"首行顶格开始,推荐使用"<!DOC ...