# # kNN 分类算法
a = np.array([[1,1],[1.2,1.5],[0.3,0.4],[0.2,0.5]])        #构造样本数据
labels = ['A','A','B','B']
# print(a.shape[0]) # 行数 shape(1)表示列数
diffMat = np.tile (np.array([[1.5,1.2]]),(a.shape[0],1)) - a #tile(被重复数据,(重复几行,每行重复几次))
# diffMat
# [[ 0.5 0.2]
# [ 0.3 -0.3]
# [ 1.2 0.8]
# [ 1.3 0.7]]
a = diffMat ** 2
# a
# [[0.25 0.04]
# [0.09 0.09]
# [1.44 0.64]
# [1.69 0.49]]
distence = a.sum(axis=1) # 1表示行 0表示列
# distence
# [0.29 0.18 2.08 2.18]
dis_sort = distence.argsort()
# dis_sort
# [1 0 2 3]
k = 3
classcount = {}
for i in range(0,len(dis_sort)):
if i>=k:
break
if dis_sort[i] <= k + 1:
classcount[labels[i]] = classcount.get(labels[i],0)+1 # classcount
# {'A': 2, 'B': 1}

机器学习之--KNN算法简单实现的更多相关文章

  1. JavaScript机器学习之KNN算法

    译者按: 机器学习原来很简单啊,不妨动手试试! 原文: Machine Learning with JavaScript : Part 2 译者: Fundebug 为了保证可读性,本文采用意译而非直 ...

  2. 机器学习之KNN算法

    1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属 ...

  3. 机器学习:k-NN算法(也叫k近邻算法)

    一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...

  4. KNN算法简单应用

    这里是写给小白看的,大牛路过勿喷. 1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集 ...

  5. 初识机器学习之kNN算法

    k近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本.然后基于这k个“邻居”的 ...

  6. 菜鸟之路——机器学习之KNN算法个人理解及Python实现

    KNN(K Nearest Neighbor) 还是先记几个关键公式 距离:一般用Euclidean distance   E(x,y)√∑(xi-yi)2 .名字这么高大上,就是初中学的两点间的距离 ...

  7. 机器学习之KNN算法(分类)

    KNN算法是解决分类问题的最简单的算法.同时也是最常用的算法.KNN算法也可以称作k近邻算法,是指K个最近的数据集,属于监督学习算法. 开发流程: 1.加载数据,加载成特征矩阵X与目标向量Y. 2.给 ...

  8. 机器学习笔记--KNN算法2-实战部分

    本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了, ...

  9. 机器学习笔记--KNN算法1

    前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 K ...

随机推荐

  1. P2837 晚餐队列安排

    此题可能用动规不太好做,主要是状态转移方程很难想个人认为,思维发散的大佬们忽视. 我看了这位大佬的dp题解后才想到了方程,在此受我一膜%%% 嗯,说下思路: 先用a[i]数组存一下输入的编号: 然后用 ...

  2. Django 信号

    信号 Django 提供一个“信号分发器”,允许解耦的应用在框架的其它地方发生操作时会被通知到. 简单来说,信号允许特定的sender通知一组receiver某些操作已经发生. 这在多处代码和同一事件 ...

  3. 初学cdq分治学习笔记(可能有第二次的学习笔记)

    前言骚话 本人蒟蒻,一开始看到模板题就非常的懵逼,链接,学到后面就越来越清楚了. 吐槽,cdq,超短裙分治....(尴尬) 正片开始 思想 和普通的分治,还是分而治之,但是有一点不一样的是一般的分治在 ...

  4. [linux]解除linux对多次登录密码错误的账户的锁定

    其他wheel账户下,执行: sudo pam_tally2 --user=username --reset

  5. scrapy之使用LinkExtractor提取链接

    一.概述: 在页面含有少量链接时,使用selector来提取信息就可以,但如果链接特别多时,就需要用LinkExtractor来提取. 二.LinkExtractor构造器的各个参数: 1.allow ...

  6. django系列 2 :启动应用,目录结构解读

    来源:https://docs.djangoproject.com/en/2.1/intro/tutorial01/ 该教程是创建一个用于投票的网页. 1.使用命令创建site 进入要创建site的目 ...

  7. Numpy 系列(七)- 常用函数

    在了解了 Numpy 的基本运算操作,下面来看下 Numpy常用的函数.     数学运算函数 add(x1,x2 [,out]) 按元素添加参数,等效于 x1 + x2 subtract(x1,x2 ...

  8. 利用git提交代码

    一.首先需要下载git 查看电脑是否安装git,打开终端,输入git,回车如果输出如下,则代表已安装了git 如果未安装,则会输出: 按照提示输入:sudo apt-get install git即可 ...

  9. [再寄小读者之数学篇](2014-06-20 求极限-L'Hospital 法则的应用)

    设 $f\in C[0,+\infty)$, $a$ 为实数, 且存在有限极限 $$\bex \vlm{x}\sez{f(x)+a\int_0^x f(t)\rd t}. \eex$$ 证明; $f( ...

  10. unix域字节流回射程序

    一.服务端程序 #include <stdio.h> #include <errno.h> #include <stdlib.h> #include <uni ...