题目描述:这里

题面已经提示我们这是费用流了

那么由源点向所有仓库连边,容量为仓库原有货物量,费用为0

然后由所有零售商店向汇点连边,容量为一个零售商店的需求量,费用为0

最后由仓库向零售商店连边,容量正无穷(由于源点和汇点的限制,所以不会出现不合法情况),费用为题给费用

然后跑费用流就得到了最小费用

至于最大费用,按套路所有费用取反后再跑一遍费用流即可

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
const int inf=0x3f3f3f3f;
struct Edge
{
int next;
int to;
int val;
int pri;
}edge[40005];
int head[255];
int dis[255];
int pre[255];
int fa[255];
bool used[255];
int lim[255];
int v1[255];
int v2[255][255];
int cnt=1;
int st,ed;
int n,m;
void init()
{
memset(head,-1,sizeof(head));
memset(edge,0,sizeof(edge));
cnt=1;
}
void add(int l,int r,int w,int v)
{
edge[cnt].next=head[l];
edge[cnt].to=r;
edge[cnt].val=w;
edge[cnt].pri=v;
head[l]=cnt++;
}
int ide(int x)
{
return (x&1)?x+1:x-1;
}
bool spfa()
{
memset(dis,0x3f,sizeof(dis));
memset(used,0,sizeof(used));
memset(lim,0,sizeof(lim));
dis[st]=0;
pre[ed]=-1;
lim[st]=inf;
used[st]=1;
queue <int> M;
M.push(st);
while(!M.empty())
{
int u=M.front();
M.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int to=edge[i].to;
if(edge[i].val&&dis[to]>dis[u]+edge[i].pri)
{
lim[to]=min(lim[u],edge[i].val);
dis[to]=dis[u]+edge[i].pri;
pre[to]=i,fa[to]=u;
if(!used[to])used[to]=1,M.push(to);
}
}
used[u]=0;
}
return pre[ed]!=-1;
}
int EK()
{
int maxw=0,minv=0;
while(spfa())
{
maxw+=lim[ed];
minv+=lim[ed]*dis[ed];
int temp=ed;
while(temp!=st)
{
edge[pre[temp]].val-=lim[ed];
edge[ide(pre[temp])].val+=lim[ed];
temp=fa[temp];
}
}
return minv;
}
int main()
{
init();
scanf("%d%d",&n,&m);
st=m+n+1,ed=m+n+2;
for(int i=1;i<=n;i++)
{
scanf("%d",&v1[i]);
add(st,i,v1[i],0);
add(i,st,0,0);
}
for(int i=1;i<=m;i++)
{
scanf("%d",&v1[i+n]);
add(i+n,ed,v1[i+n],0);
add(ed,i+n,0,0);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&v2[i][j+n]);
add(i,j+n,inf,v2[i][j+n]);
add(j+n,i,0,-v2[i][j+n]);
}
}
printf("%d\n",EK());
init();
for(int i=1;i<=n;i++)
{
add(st,i,v1[i],0);
add(i,st,0,0);
}
for(int i=1;i<=m;i++)
{
add(i+n,ed,v1[i+n],0);
add(ed,i+n,0,0);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
add(i,j+n,inf,-v2[i][j+n]);
add(j+n,i,0,v2[i][j+n]);
}
}
printf("%d\n",-EK());
return 0;
}

  

网络流24题 ——运输问题 luogu 4015的更多相关文章

  1. Cogs 739. [网络流24题] 运输问题(费用流)

    [网络流24题] 运输问题 ★★ 输入文件:tran.in 输出文件:tran.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: «编程任务: 对于给定的m 个仓库和n 个零售 ...

  2. 网络流24题——分配问题 luogu 4014

    题目链接:这里 本题是一个典型的费用流问题,可以作为费用流建图模板使用 首先看到,每个人只能做一件工作,每件工作只能做一次,一个人做某件工作有一定的收益 那么我们建立一个超级源点st和超级终点ed,然 ...

  3. 【费用流】【网络流24题】【cogs 739】运输问题

    739. [网络流24题] 运输问题 ★★ 输入文件:tran.in 输出文件:tran.out 简单对照 时间限制:1 s 内存限制:128 MB «问题描写叙述: «编程任务: 对于给定的m 个仓 ...

  4. Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流)

    Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流) Description W 公司有m个仓库和n个零售商店.第i个仓库有\(a_i\)个单位的货物:第j个零售商店需要\( ...

  5. LIbreOJ #6011. 「网络流 24 题」运输问题 最小费用最大流

    #6011. 「网络流 24 题」运输问题 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  6. Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算)

    Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算) Description T 公司发现其研制的一个软件中有 n 个错误,随即为该软件发放 ...

  7. Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)

    Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...

  8. Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流)

    Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流) Description 问题描述: 假设一个试题库中有n道试题.每道试题都标明了所属类别.同 ...

  9. Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流)

    Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流) Description 问题描述: 给定正整数序列x1,...,xn . (1 ...

随机推荐

  1. SpringBoot使用Filter过滤器处理是否登录的过滤时,用response.sendRedirect()转发报错

    1.使用response.sendRedirect("/login")时报错,控制台报错如下: Cannot call sendError() after the response ...

  2. C# Note35: 异步操作

    .NET Framework 为异步操作提供了两种设计模式:使用 IAsyncResult 对象的异步操作与使用事件的异步操作. IAsyncResult 异步设计模式 通过名为 BeginOpera ...

  3. Java多线程9:中断机制

    一.概述 之前讲解Thread类中方法的时候,interrupt().interrupted().isInterrupted()三个方法没有讲得很清楚,只是提了一下.现在把这三个方法同一放到这里来讲, ...

  4. mysql 基本语句

    求知若渴 虚心若愚   博客园 首页 新随笔 联系 管理 随笔-391  文章-0  评论-7  mysql sql常用语句大全   SQL执行一次INSERT INTO查询,插入多行记录 inser ...

  5. xadmin 组件拓展自定义使用

    xadmin 组件相关可选自定义字段 list_display 功能 设置默认的显示字段(列) 配置 list_display = ['name', 'desc', 'detail', 'degree ...

  6. windows 下搭建 git 服务器 gogs

    本文基于 windows7 64位 搭建 gogs gogs 官方文档地址:https://gogs.io/docs软件下载地址:https://dl.gogs.io/ 环境要求 数据库(选择以下一项 ...

  7. sopUI上手教程

    1.新建项目 File-->New SOAP Project-->Project Name:填入项目名  Initial WSDL:填入项目的 web Services 2.添加WSDL ...

  8. Spring Cloud Data Flow 中的 ETL

    Spring Cloud Data Flow 中的 ETL 影宸风洛 程序猿DD 今天 来源:SpringForAll社区 1 概述 Spring Cloud Data Flow是一个用于构建实时数据 ...

  9. nowcoder16450 托米的简单表示法

    题目链接 思路 仔细理解一下题意可以发现. 对于每个完整的括号序列都是独立的,然后就想到分治.高度是序列中所有括号序列的最大值,宽度是所有括号序列宽度和\(+1\). 然后仔细想了一下,这种分治应该是 ...

  10. ansible基本使用方法

    一.ansible的运行流程 ansible是基于ssh模块的软件,所以主控端和被控端的ssh服务必须正常才能保证ansbile软件的可用性. 检查ssh服务是否正常:   systemctl sta ...