51nod1812树的双直径(换根树DP)
传送门:http://www.51nod.com/Challenge/Problem.html#!#problemId=1812
题解:头一次写换根树DP。
求两条不相交的直径乘积最大,所以可以这样考虑:把一条边割掉,然后分别求两棵子树内的最长链乘起来就行了。由于负负得正,所以要再求一次最短链,就是把边权全部取负求一下就行了。然后就能通过dfs维护子树i内的答案dn[i]和不含以i为根的子树的答案up[i],dn[i]很好维护,重点是维护up[i],共5种可能:(1)从父亲的up继承过来(2)前后缀中的最大值f+出边+入边(3)父亲的g+兄弟节点中最大的f+出边(4)前驱/后继中的最大和次大(5)前驱/后继中的子树中的直径。然后转移状态就行了。
细节太多……还要__int128。为了方便,计算时答案用long long维护,乘起来再转long long……
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=4e5+;
int n,tot,hd[N],v[N<<],w[N<<],nxt[N<<],p[N<<],len[N<<];
ll f[N],g[N],pre[N],suf[N],dn[N],up[N];
__int128 ans;
void print(__int128 x){if(x>)print(x/);putchar(''+x%);}
void add(int x,int y,int z){v[++tot]=y,nxt[tot]=hd[x],hd[x]=tot,w[tot]=z;}
void dfs1(int u, int fa)
{
f[u]=dn[u]=;
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa)
{
dfs1(v[i],u);
dn[u]=max(dn[u],f[u]+f[v[i]]+w[i]);
f[u]=max(f[u],f[v[i]]+w[i]);
dn[u]=max(dn[u],dn[v[i]]);
}
}
void dfs2(int u,int fa)
{
int cnt=;
for(int i=hd[u];i;i=nxt[i])if(v[i]!=fa)p[++cnt]=v[i],len[cnt]=w[i];
pre[]=suf[cnt+]=;
for(int i=;i<=cnt;i++)pre[i]=max(pre[i-],f[p[i]]+len[i]);
for(int i=cnt;i;i--)suf[i]=max(suf[i+],f[p[i]]+len[i]);
/*一个点向上的直径:
(1)从父亲的up继承过来
(2)前后缀中的最大值f+出边+入边
(3)父亲的g+兄弟节点中最大的f+出边
(4)前驱/后继中的最大和次大
(5)前驱/后继中的子树中的直径*/
for(int i=;i<=cnt;i++)
{
g[p[i]]=max(g[p[i]],g[u]+len[i]);
g[p[i]]=max(g[p[i]],max(pre[i-],suf[i+])+len[i]);
up[p[i]]=max(up[p[i]],up[u]);
up[p[i]]=max(up[p[i]],pre[i-]+suf[i+]);
up[p[i]]=max(up[p[i]],g[u]+max(pre[i-],suf[i+]));
}
ll mx1=-1e18,mx2=-1e18,mx=-1e18,tmp;
for(int i=;i<=cnt;i++)
{
up[p[i]]=max(up[p[i]],max(mx1+mx2,mx));
tmp=f[p[i]]+len[i];
if(tmp>mx1)mx2=mx1,mx1=tmp;else if(tmp>mx2)mx2=tmp;
mx=max(mx,dn[p[i]]);
}
mx1=mx2=mx=-1e18;
for(int i=cnt;i;i--)
{
up[p[i]]=max(up[p[i]],max(mx1+mx2,mx));
tmp=f[p[i]]+len[i];
if(tmp>mx1)mx2=mx1,mx1=tmp;else if(tmp>mx2)mx2=tmp;
mx=max(mx,dn[p[i]]);
}
for(int i=hd[u];i;i=nxt[i])if(v[i]!=fa)dfs2(v[i],u);
}
int main()
{
scanf("%d",&n);
for(int i=,x,y,z;i<n;i++)scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,z);
dfs1(,),dfs2(,);
for(int i=;i<=n;i++)ans=max(ans,(__int128)dn[i]*up[i]);
for(int i=;i<=tot;i++)w[i]=-w[i];
memset(up,,sizeof up);
memset(g,,sizeof g);
dfs1(,),dfs2(,);
for(int i=;i<=n;i++)ans=max(ans,(__int128)dn[i]*up[i]);
print(ans);
}
51nod1812树的双直径(换根树DP)的更多相关文章
- 51nod 1812 树的双直径 题解【树形DP】【贪心】
老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 ...
- 2018.10.30 NOIP训练 【模板】树链剖分(换根树剖)
传送门 纯粹是为了熟悉板子. 然后发现自己手生了足足写了差不多25min而且输出的时候因为没开long longWA了三次还不知所云 代码
- BZOJ2591/LG3047 「USACO12FEB」Nearby Cows 换根树形DP
问题描述 BZOJ2591 LG3047 题解 换根树形DP. 设 \(opt[i][j]\) 代表 当 \(1\) 为根时,\(i\) 为根的子树中,到 \(i\) 的距离为 \(j\) 的权值和 ...
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 2018.06.30 BZOJ3083: 遥远的国度(换根树剖)
3083: 遥远的国度 Time Limit: 10 Sec Memory Limit: 512 MB Description 描述 zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国 ...
- Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】
传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...
- POJ3585:Accumulation Degree(换根树形dp)
Accumulation Degree Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3425 Accepted: 85 ...
- [BZOJ3566][SHOI2014]概率充电器 换根树形DP
链接 题意:n个充电元件形成一棵树,每个点和每条边都有各自的充电概率,元件可以自身充电或者通过其他点和边间接充电,求充电状态元件的期望个数 题解 设1为根节点 设 \(f[x]\) 表示 \(x\) ...
- 51nod"省选"模测 A 树的双直径(树形dp)
题意 题目链接 Sol 比赛结束后才调出来..不多说啥了,就是因为自己菜. 裸的up-down dp,维护一下一个点上下的直径就行,一开始还想了个假的思路写了半天.. 转移都在代码注释里 毒瘤题目卡空 ...
随机推荐
- Python之--paramiko实例
一.基于SFTPClient类连接sshd服务器: 特点: 一般用于实现对远程服务器的上传, 下载和对远程目录文件的操作 import pramiko hostname = '172.24.0.110 ...
- Python第六天 类型转换
Python第六天 类型转换 目录 Pycharm使用技巧(转载) Python第一天 安装 shell 文件 Python第二天 变量 运算符与表达式 input()与raw_inp ...
- java10.0.2和java 11.0.1配置环境变量
java10.0.2 在网上找了各种方法一直也没配好打开jak下的lib文件夹发现并没有tools.jar,后经查询jdk-9后就没有了上述.jar文件所以我的配置方法如下 ClASSPATH C:\ ...
- SQLServer之创建标量函数
创建标量函数注意事项 在 SQL Server 和 Azure SQL Database 中创建用户定义函数. 用户定义函数是接受参数.执行操作(例如复杂计算)并将操作结果以值的形式返回的 Trans ...
- ASP.MVC学习资源总结
自己动手写一个简单的MVC框架(第一版) 自己动手写一个简单的MVC框架(第二版) ASP.Net请求处理机制初步探索之旅 - Part 1 前奏 ASP.Net请求处理机制初步探索之旅 - Part ...
- SQLServer之创建视图
视图定义 视图是一个虚拟的表,是一个表中的数据经过某种筛选后的显示方式,视图由一个预定义的查询select语句组成. 使用SSMS数据库管理工具创建视图 1.连接数据库,选择数据库,展开数据库-> ...
- Python文件操作之把臂入林
文件操作1.打开文件open(file, mode='r', buffering=None, encoding=None, errors=None, newline=None, closefd=Tru ...
- linq 左连接后实现与主表一对一关系数据
var query1 = from r in _residentRepository.GetAll() join i in _inLogRepository.GetAll() on r.Id equa ...
- 2星|《重新定义物流》:形式像PPT,内容像公关稿
全书彩印,彩图大概占一半篇幅,感觉是把一些PPT配上点说明拼成了一本书.前后的彩图风格差异较大,大部分给我的感觉都是堆砌名词术语的官方宣传材料,少部分色调单一形式简单的图,像是作者们自己绘制的,反而能 ...
- .NET CORE学习笔记系列(2)——依赖注入【3】依赖注入模式
原文:https://www.cnblogs.com/artech/p/net-core-di-03.html IoC主要体现了这样一种设计思想:通过将一组通用流程的控制权从应用转移到框架中以实现对流 ...