jzoj6099. 【GDOI2019模拟2019.4.1】Dist
题目链接:https://jzoj.net/senior/#main/show/6099
考虑直接统计某个点到其它所有点的距离和
我们先把整个团当成一个点建图,处理出任意两个团之间的距离\(dis(i,j)\),注意这里的\(dis\)表示的是两个不位于团的相交部分的两点之间距离,即路程一定是某个点\(a->相交部分->b->……\)这样的
接下来我们枚举点\(x\),统计所有点到\(x\)的最短路,我们考虑从\(x\)到所有团的最短路,并按照该最短路从小到大的顺序考虑它们对答案的贡献
对于\(x\)和任意一点\(y\),其最短路一定是由团之间的距离产生的答案,我们假设\(x\)和\(y\)分别属于联通块\(i,j\),那么\(dis(i,j)\)想要对答案产生贡献的前提条件就是在集合\(j\)中所有比其小的\(dis\)仍未未出现
即它对答案的贡献就是那些属于当前集合\(j\)中的除了已经计算贡献的点以外的点数
我们记\(cnt[i][sta]\)表示团\(i\)中的点一定存在,\(sta\)中为0的点一定不存在的点的数量
接下来暴力统计答案即可
#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<bitset>
#include<map>
#include<set>
using namespace std;
#define lowbit(x) (x)&(-x)
#define rep(i,a,b) for (int i=a;i<=b;i++)
#define per(i,a,b) for (int i=a;i>=b;i--)
#define maxd 1000000007
typedef long long ll;
const int N=100000;
const double pi=acos(-1.0);
int n,m,cost[20],in[100100],id[20];
ll dis[20][20],cnt[20][1<<20],all,sum[1<<20],d[20];
bitset<100100> block[20];
int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
}
bool cmp(int x,int y)
{
return d[x]<d[y];
}
void init()
{
n=read();m=read();all=(1<<m)-1;
rep(i,1,m)
{
cost[i]=read();int len=read();
rep(j,1,len)
{
int x=read();
in[x]|=(1<<(i-1));
block[i][x]=1;
}
}
rep(i,1,n) sum[in[i]]++;
rep(i,1,m)
{
rep(j,0,all) if (j&(1<<(i-1))) cnt[i][j]=sum[j];
rep(j,1,m)
{
rep(k,0,all)
{
if (k&(1<<(j-1))) cnt[i][k]+=cnt[i][k^(1<<(j-1))];
}
}
}
}
void floyd()
{
rep(i,1,m) rep(j,1,m) dis[i][j]=dis[j][i]=maxd;
rep(i,1,m) dis[i][i]=cost[i];
rep(i,1,m)
{
rep(j,1,m)
{
if (i==j) continue;
if ((block[i]&block[j]).any()) {dis[i][j]=cost[i]+cost[j];dis[j][i]=dis[i][j];}
}
}
rep(k,1,m)
{
rep(i,1,m)
{
rep(j,1,m)
{
if ((k==i) || (k==j) || (i==j)) continue;
ll nowdis=dis[i][k]+dis[k][j];
if ((k!=i) && (k!=j)) nowdis-=cost[k];
dis[i][j]=min(nowdis,dis[i][j]);
}
}
}
}
void work()
{
ll ans=0;
rep(i,1,n)
{
rep(j,1,m) {id[j]=j;d[j]=maxd;}
rep(j,1,m)
{
if (in[i]&(1<<(j-1)))
{
rep(k,1,m) d[k]=min(d[k],dis[j][k]);
}
}
sort(id+1,id+1+m,cmp);
int sta=0;
rep(j,1,m)
{
ans+=d[id[j]]*cnt[id[j]][all^sta];
sta|=(1<<(id[j]-1));
}
ans-=d[id[1]];
}
printf("%lld",ans/2);
}
void file()
{
freopen("dist.in","r",stdin);
freopen("dist.out","w",stdout);
}
int main()
{
file();
init();
floyd();
work();
return 0;
}
jzoj6099. 【GDOI2019模拟2019.4.1】Dist的更多相关文章
- jzoj6101. 【GDOI2019模拟2019.4.2】Path
题目链接:https://jzoj.net/senior/#main/show/6101 记\(f_i\)为从\(i\)号点走到\(n\)号点所花天数的期望 那么根据\(m\)条边等可能的出现一条和一 ...
- [JZOJ6075]【GDOI2019模拟2019.3.20】桥【DP】【线段树】
Description N,M<=100000,S,T<=1e9 Solution 首先可以感受一下,我们把街道看成一行,那么只有给出的2n个点的纵坐标是有用的,于是我们可以将坐标离散化至 ...
- [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)
题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...
- [jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)
题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 ...
- [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)
题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...
- [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)
题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...
- [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)
题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...
- [jzoj 4528] [GDOI2019模拟2019.3.26] 要换换名字 (最大权闭合子图)
题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联 ...
- [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)
题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...
随机推荐
- Android Studio调试手机或者安装APK的时候出现install failed test only
1.检查\app\src\main\AndroidMainfest.xml中是否有testOnly属性为true,如果有去掉或者改为false 2.检查Android Studio和gradle版本是 ...
- ERROR 1071 (42000): Specified key was too long; max key length is 767 bytes
今天在MySQL 5.6版本的数据库中修改InnoDB表字段长度时遇到了"ERROR 1071 (42000): Specified key was too long; max key le ...
- C#中Skip和Take的用法
Skip()和Take()方法都是IEnumerable<T> 接口的扩展方法,包括C#中的所有Collections类,如ArrayList,Queue,Stack等等,还有数组和字符串 ...
- c/c++ 多线程 boost的读写(reader-writer)锁
多线程 boost的读写(reader-writer)锁 背景:保护很少更新的数据结构时,c++标准库没有提供相应的功能. 例如:有个DNS条目缓存的map,基本上很少有更新,大部分都是读取,但是偶尔 ...
- LeetCode算法题-Diameter of Binary Tree(Java实现)
这是悦乐书的第257次更新,第270篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第124题(顺位题号是543).给定二叉树,您需要计算树的直径长度. 二叉树的直径是树中 ...
- C#基础知识之属性
其实属性大家经常用,可以说是非常熟悉了,这里就记录一下我那天突然对属性产生的疑惑.为什么需要使用属性?属性的好处是什么? 一.什么是属性? 属性(Property) 是类(class).结构(stru ...
- HBase源码实战:CreateRandomStoreFile
/* * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agre ...
- day 17-18 常用模块
time:时间 '''时间戳(timestamp):time.time()延迟线程的运行:time.sleep(secs)(指定时间戳下的)当前时区时间:time.localtime([secs])( ...
- loadrunner脚本函数讲解
一. get请求和post请求区别:web_link(get).web_submit_form(post)依赖上下文,web_url.web_submit_data不依赖上下文,建议使用web_url ...
- 引用传递this关键字
this关键字主要有三个应用: (1)this调用本类中的属性,也就是类中的成员变量: (2)this调用本类中的其他方法: (3)this调用本类中的其他构造方法,调用时要放在构造方法的首行.