jzoj6099. 【GDOI2019模拟2019.4.1】Dist
题目链接:https://jzoj.net/senior/#main/show/6099
考虑直接统计某个点到其它所有点的距离和
我们先把整个团当成一个点建图,处理出任意两个团之间的距离\(dis(i,j)\),注意这里的\(dis\)表示的是两个不位于团的相交部分的两点之间距离,即路程一定是某个点\(a->相交部分->b->……\)这样的
接下来我们枚举点\(x\),统计所有点到\(x\)的最短路,我们考虑从\(x\)到所有团的最短路,并按照该最短路从小到大的顺序考虑它们对答案的贡献
对于\(x\)和任意一点\(y\),其最短路一定是由团之间的距离产生的答案,我们假设\(x\)和\(y\)分别属于联通块\(i,j\),那么\(dis(i,j)\)想要对答案产生贡献的前提条件就是在集合\(j\)中所有比其小的\(dis\)仍未未出现
即它对答案的贡献就是那些属于当前集合\(j\)中的除了已经计算贡献的点以外的点数
我们记\(cnt[i][sta]\)表示团\(i\)中的点一定存在,\(sta\)中为0的点一定不存在的点的数量
接下来暴力统计答案即可
#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<bitset>
#include<map>
#include<set>
using namespace std;
#define lowbit(x) (x)&(-x)
#define rep(i,a,b) for (int i=a;i<=b;i++)
#define per(i,a,b) for (int i=a;i>=b;i--)
#define maxd 1000000007
typedef long long ll;
const int N=100000;
const double pi=acos(-1.0);
int n,m,cost[20],in[100100],id[20];
ll dis[20][20],cnt[20][1<<20],all,sum[1<<20],d[20];
bitset<100100> block[20];
int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
}
bool cmp(int x,int y)
{
return d[x]<d[y];
}
void init()
{
n=read();m=read();all=(1<<m)-1;
rep(i,1,m)
{
cost[i]=read();int len=read();
rep(j,1,len)
{
int x=read();
in[x]|=(1<<(i-1));
block[i][x]=1;
}
}
rep(i,1,n) sum[in[i]]++;
rep(i,1,m)
{
rep(j,0,all) if (j&(1<<(i-1))) cnt[i][j]=sum[j];
rep(j,1,m)
{
rep(k,0,all)
{
if (k&(1<<(j-1))) cnt[i][k]+=cnt[i][k^(1<<(j-1))];
}
}
}
}
void floyd()
{
rep(i,1,m) rep(j,1,m) dis[i][j]=dis[j][i]=maxd;
rep(i,1,m) dis[i][i]=cost[i];
rep(i,1,m)
{
rep(j,1,m)
{
if (i==j) continue;
if ((block[i]&block[j]).any()) {dis[i][j]=cost[i]+cost[j];dis[j][i]=dis[i][j];}
}
}
rep(k,1,m)
{
rep(i,1,m)
{
rep(j,1,m)
{
if ((k==i) || (k==j) || (i==j)) continue;
ll nowdis=dis[i][k]+dis[k][j];
if ((k!=i) && (k!=j)) nowdis-=cost[k];
dis[i][j]=min(nowdis,dis[i][j]);
}
}
}
}
void work()
{
ll ans=0;
rep(i,1,n)
{
rep(j,1,m) {id[j]=j;d[j]=maxd;}
rep(j,1,m)
{
if (in[i]&(1<<(j-1)))
{
rep(k,1,m) d[k]=min(d[k],dis[j][k]);
}
}
sort(id+1,id+1+m,cmp);
int sta=0;
rep(j,1,m)
{
ans+=d[id[j]]*cnt[id[j]][all^sta];
sta|=(1<<(id[j]-1));
}
ans-=d[id[1]];
}
printf("%lld",ans/2);
}
void file()
{
freopen("dist.in","r",stdin);
freopen("dist.out","w",stdout);
}
int main()
{
file();
init();
floyd();
work();
return 0;
}
jzoj6099. 【GDOI2019模拟2019.4.1】Dist的更多相关文章
- jzoj6101. 【GDOI2019模拟2019.4.2】Path
题目链接:https://jzoj.net/senior/#main/show/6101 记\(f_i\)为从\(i\)号点走到\(n\)号点所花天数的期望 那么根据\(m\)条边等可能的出现一条和一 ...
- [JZOJ6075]【GDOI2019模拟2019.3.20】桥【DP】【线段树】
Description N,M<=100000,S,T<=1e9 Solution 首先可以感受一下,我们把街道看成一行,那么只有给出的2n个点的纵坐标是有用的,于是我们可以将坐标离散化至 ...
- [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)
题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...
- [jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)
题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 ...
- [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)
题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...
- [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)
题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...
- [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)
题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...
- [jzoj 4528] [GDOI2019模拟2019.3.26] 要换换名字 (最大权闭合子图)
题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联 ...
- [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)
题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...
随机推荐
- 瓦片切图工具gdal2tiles.py改写为纯c++版本(二)
python这么火,C++/C#的程序员都生存不下去了,为啥还要干把python转写成c++的这种反动的事? 项目需要呗... gdal2tiles.py文件中有两个类是计算全球墨卡托与WGS84两种 ...
- iOS----------developerDiskImage
真机测试时提示Could not find Developer Disk Image.这该怎么办???? 这是由于真机系统过高或者过低,Xcode中没有匹配的配置包文件,我们可以通过这个路径进入配置包 ...
- 小米8 探索版 屏幕指纹版超简单卡刷开发版获取Root权限的教程
小米的手机不同手机型号通常情况下miui官网都提供两个不同的系统,分别是稳定版和开发版,稳定版没有提供ROOT超级权限管理,开发版中就开启了ROOT超级权限,在很多工作的时候我们需要使用的一些功能强大 ...
- Android远程桌面助手(Build 0787)
Android远程桌面助手(Build 0787) 新增: 增加了输入法的快速切换功能,支持通过Google拼音输入法在PC端快速输入中文: 增加了Broadcast的暂停和继续功能: 某些应用截屏失 ...
- java新知识系列 五
类方法和对象方法的使用限制 abstract修饰符的注意 静态变量只能在类主体中定义,不能在方法中定义 线程的各种方法差别 关于抽象类 什么是中间件 Servlet生命周期的三个主要方法 可以修饰类的 ...
- ASP.NET Core 入门教程 9、ASP.NET Core 中间件(Middleware)入门
一.前言 1.本教程主要内容 ASP.NET Core 中间件介绍 通过自定义 ASP.NET Core 中间件实现请求验签 2.本教程环境信息 软件/环境 说明 操作系统 Windows 10 SD ...
- Prometheus Operator - 每天5分钟玩转 Docker 容器技术(177)
前面我们介绍了 Kubernetes 的两种监控方案 Weave Scope 和 Heapster,它们主要的监控对象是 Node 和 Pod.这些数据对 Kubernetes 运维人员是必须的,但还 ...
- jQuery根据radio来控制texteara
最近遇到一个问题:需要通过点击radio来控制texteara的属性变化. 这里主要有两个知识点:1,给texteara设置属性:2,给texteara设置背景颜色. 在这里,假设texteara的i ...
- LeetCode算法题-Design HashSet(Java实现)
这是悦乐书的第298次更新,第317篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第166题(顺位题号是705).不使用任何内建的hash表库设计一个hash集合,应包含 ...
- JetBrains 注册码
C40PF37RR0-eyJsaWNlbnNlSWQiOiJDNDBQRjM3UlIwIiwibGljZW5zZWVOYW1lIjoiemhhbmcgeW9uZyIsImFzc2lnbmVlTmFtZ ...