RCNN论文细节
写在前面:
本系列笔记主要记录本人在阅读过程中的收获,尽量详细到实现层次,水平有限,欢迎留言指出问题~
这篇文章被认为是深度学习应用于目标检测的开山之作,自然是要好好读一下的,由于文章是前些日子读的,所以仅凭记忆把印象深刻的地方记录一下,许多地方是自己理解,有错误请指出。
1. 算法的流程

这篇文章干了一件什么事情呢,就是用selective search生成一堆建议区域,然后把这些建议区域根据一定的准则做成分类训练集,微调预训练的CNN,C然后用CNN提取的特征和对应的类别训练SVM二分类器,最后经过非极大值抑制过滤后得到的结果对应的region proposal就作为检测边框。预测的时候,要对每一个region proposal执行一次CNN+SVM。
我理解的是,CNN(或者说CNN+SVM)在RCNN中仍然只是一个分类模型,对selective search生成的region proposals进行分类,经过后处理,留下的被判定为目标的region proposal就作为最后的检测结果。
2. 训练细节
2.1 生成候选区域
作者使用selective search算法生成大约2k个就建议区域,这是一个传统算法,组合多种策略和人工特征可以直接给出合乎条件的目标区域。这里的问题是,生成的边框尺寸大小不一,背景多目标少,很多只能框住目标的一部分,这些对后面的训练策略有影响。
2.2 微调预训练的CNN
作者先在公开数据集上预训练了一个CNN的分类模型,然后在当前任务上微调。具体的,上一步生成一堆建议区域有很多只框住了目标的一部分,作者把IoU>0.5的认定为正样本,其余的为负样本,于是形成了一个分类的训练集,以此来微调模型。
这里面还有个细节,上一步生成的一堆建议区域,并不能直接送入CNN,因为当时的CNN分类模型都是若干卷积层+全连接层这样的结构,因为全连接层的缘故,模型的输入必须是某个固定的尺寸,因此哪些大小不一的region proposals必须先warp到fixed size。具体warp方法不展开讲了。
2.3 训练SVM分类器
同样需要形成一个训练集(X,Y),这次标准不一样,将IoU=1的认定为正样本(y=1),IoU<0.3的认定为负样本(y=0)。具体的,IoU是region proposal与ground truth的交并比,而训练集的X则是该region proposal经过CNN encode得到的特征向量。
2.4 过滤
使用非极大值抑制去除重复检测
3. 重要问题
为什么不直接用CNN模型进行分类,而要使用SVM呢?
为什么训练CNN和SVM时候,正负例判定标准IoU阈值设置不同呢?
答:这两个问题是相关的,我认为本质上是因为这是一个多阶段的模型,很多地方需要trade off,第一步生成的建议区域是正例少负例多,构建训练集的时候就容易不平衡,因此需要放宽正例的条件,但是要想定位准确,就需要正例更精准,这就是矛盾所在,因此有了不同的IoU阈值和引入SVM。具体的,由于算法最后给出的检测结果就是经过筛选的region proposal,那么肯定希望它跟ground truth更吻合,也就是IoU接近于1,那么自然的要把哪些容易产生干扰的样本剔除掉为好。但训练CNN需要大量样本,在当前任务下,负例多正例少,一次调高IoU阈值为0.5,增加正例数量,防止过拟合;而训练SVM需要样本数量少,因为IoU阈值设置严格,以提高定位准确率。
4. 缺陷
4.1 对每一个region proposal都要过一遍CNN,重复计算严重拖累的模型的效率
直观的想,解决这个问题就是要共享计算,也就是要先对图片进行一次整体卷积,然后在feature map上选取region proposal,但是这时的region proposal的尺寸又是大小不一的了,不满足全连接层的输入要求。。针对这个问题,提出了SPP-Net和Fast-RCNN,后面陆续展开讲。
4.2 通过selective search生成region proposals。
这部分是不能通过学习优化的,然后通过对这些分类代替回归定位,感觉潜力有限。是否回归生成region proposals更优,还不太确定,等读到后面的论文再说。
4.3 多阶段的模型,尤其是加入不能学习的算法,造成一种脱节感,限制了深度学习模型的威力。
RCNN论文细节的更多相关文章
- [原创]Faster R-CNN论文翻译
Faster R-CNN论文翻译 Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什 ...
- R-CNN论文翻译
R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和 ...
- [Network Architecture]Mask R-CNN论文解析(转)
前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...
- k[原创]Faster R-CNN论文翻译
物体检测论文翻译系列: 建议从前往后看,这些论文之间具有明显的延续性和递进性. R-CNN SPP-net Fast R-CNN Faster R-CNN Faster R-CNN论文翻译 原文地 ...
- Mesh R-CNN 论文翻译(实验部分)
本文为 Mesh R-CNN 论文翻译(原理部分)的后续.Mesh R-CNN 原论文. 4 实验 我们在ShapeNet上对网格预测分支进行基准测试,并与最先进的方法相比较.然后,我们在野生的有 ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- Faster R-CNN论文详解 - CSDN博客
废话不多说,上车吧,少年 paper链接:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks ...
- 【目标检测】Cascade R-CNN 论文解析
目录 0. 论文链接 1. 概述 2. 网络结构的合理性 3. 网络结构 4. 参考链接 @ 0. 论文链接 Cascade R-CNN 1. 概述 这是CVPR 2018的一篇文章,这篇文章也为 ...
- Make R-CNN论文学习
在论文是在Faster R-CNN的基础上的改进 ,实现的效果有: 目标检测:能够在输入图像中绘制出目标的边界框,预测目标位置 目标分类:判别出该划定边界的目标的类别是什么,如人.车.猫和狗等类别 像 ...
随机推荐
- GraphQL Java Demo代码
mvn 引用GraphQL <dependency> <groupId>com.graphql-java</groupId> <artifactId>g ...
- golang包管理工具glide安装
1:下载安装glide go get github.com/Masterminds/glide glide的源码以及exe文件在第一个gopath目录,如果不知道哪个是第一个gopath,echo一下 ...
- 2019年一次java知识点总结
java基础 数据类型 集合与数据结构 关键字(static,rty ...) IO和网络 多线程(并发与锁,死锁) 异常 简单算法,复杂度 JVM 类加载 java内存模型 对象监听器字节码 垃圾回 ...
- 【转】web.xml中的contextConfigLocation在spring中的作用
一.spring中如何使用多个xml配置文件 1.在web.xml中定义contextConfigLocation参数,Spring会使用这个参数去加载所有逗号分隔的xml文件,如果没有这个参数,sp ...
- mingw-gcc-9.0.1-i686-posix-sjlj-201903
-------------------------------------------------------------------------------gcc version 9.0.1 201 ...
- Django --- Django下载和APP创建 ORM (大概步骤)
1,下载: 命令行: pip install django == 1.11.15 pip install -i或 源 django == 1.11.15 pycharm settings 解释器 点 ...
- 无法为具有固定名称“System.Data.SqlClient”的 ADO.NET 提供程序加载在应用程序配置文件中注册的实体框架提供程序类型“System.Data.Entity.SqlServer.SqlProviderServices, EntityFramework.SqlServer”。请确保使用限定程序集的名称且该程序集对运行的应用程序可用。有关详细信息,请参阅 http://go.m
Windows服务中程序发布之后会如下错误: 无法为具有固定名称“System.Data.SqlClient”的 ADO.NET 提供程序加载在应用程序配置文件中注册的实体框架提供程序类型“Syste ...
- golang自动构建脚本
#!/bin/sh #代码分支 branch_c=$ branch_p=$ #服务器 server=$ #构建版本 version=$ case $server in test1) echo &quo ...
- 末学者笔记--apache编译安装及LAMP架构上线
apache介绍 一.Apache的三种工作模式 Apache一共有3种稳定的MPM模式(多进程处理模块),它们分别是prefork.worker.event.http-2.2版本的httpd默认的m ...
- IntelliJ IDEA 如何设置类头注释和方法注释
从VS转过来的,ide的差距很大的,所以...特意折腾了很久,结果还是没有VS的 '///' 好用 一.类头注释 打开file -> setting -> Editor -> Fil ...