hive优化之并行执行任务
1、与Oracle并行技术一样,hive在执行mapreduce作业时也可以执行并行查询。针对于不同业务场景SQL语句的执行情况,有些场景下SQL的执行是需要分割成几段去执行的,而且期间并不全是存在依赖关系。默认情况下,hive只会一段一段的执行mapreduce任务。使用并行的好处在于可以让服务器可以同时去执行那些不想关的业务场景,比如:
select deptno,count(1) from emp01 group by deptno
union all
select deptno ,count(1) from emp02 group by deptno;
或者
from emp_full
insert into table emp01 partitioned(pt='01')
select empno,ename,sal,comm,hiredate,deptno
insert into table emp02 partitioned(pt='02')
select empno,ename,sal,comm,hiredate,deptno;
2、hive中控制并行执行的参数有如下几个:
$ bin/hive -e set | grep parall
hive.exec.parallel=false
hive.exec.parallel.thread.number=8
hive.stats.map.parallelism=1
其中:hive.exec.parallel=false、hive.exec.parallel.thread.number=8分别控制着hive并行执行的特性。hive.exec.parallel=false表示默认没有启用并行参数,可以将其设置为true,在执行作业前进行session级别设置;hive.exec.parallel.thread.number=8表示每个SQL执行并行的线程最大值,默认是8.
例如:
set hive.exec.parallel=true;
set hive.exec.parallel.thread.number=8;
select deptno,count(1) from emp group by deptno
union all
select deptno ,count(1) from emp group by deptno;
上面这个SQL的执行既可以启动并行,既可以同时执行不相关任务,而不需要一步一步顺序执行。
3、注意点:在hadoop上自行mapreduce任务数是有限制的,针对于集群资源充足的情况,并行自行可以很大程度提高性能,但如果集群资源本身就很紧张,那么并行并不能启动有效效果。
一个可能的hive作业设置为:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
set hive.exec.reducers.bytes.per.reducer=1000000000;
set hive.exec.reducers.max=256;
set hive.merge.mapfiles=true;
set hive.merge.mapredfiles =ture;
set hive.merge.size.per.task=256000000;
set hive.merge.smallfiles.avgsize=16000000;
set hive.exec.compress.intermediate=true;
set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec;
set hive.exec.compress.output=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set hive.exec.parallel=true;
set hive.exec.parallel.thread.number=8;
select deptno,count(1) from emp group by deptno
union all
select deptno ,count(1) from emp group by deptno;
hive优化之并行执行任务的更多相关文章
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- hive学习(八)hive优化
Hive 优化 1.核心思想: 把Hive SQL 当做Mapreduce程序去优化 以下SQL不会转为Mapreduce来执行 select仅查询本表字段 where仅对本表字段做条件过滤 Ex ...
- Hive优化(整理版)
1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apac ...
- Hive优化(十一)
Hive优化 Hive的存储层依托于HDFS,Hive的计算层依托于MapReduce,一般Hive的执行效率主要取决于SQL语句的执行效率,因此,Hive的优化的核心思想是MapReduce的优 ...
- (hive)hive优化(转载)
1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apac ...
- Hive优化(面试宝典)(详细的九个优化)
Hive优化(面试宝典) 1.1 hive的随机抓取策略 理论上来说,Hive中的所有sql都需要进行mapreduce,但是hive的抓取策略帮我们 省略掉了这个过程,把切片split的过程提前帮我 ...
- Hive 12、Hive优化
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...
- hive优化之——控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...
- Hive优化案例
1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...
随机推荐
- ajax之async属性
Ajax请求中的async:false/true的作用 官方的解释是:http://api.jquery.com/jQuery.ajax/ async Boolean Default: true By ...
- git代码统计
1.统计一段时间的代码量 git log --format='%aN' | sort -u | while read name; do echo -en "$name\t"; gi ...
- Linux安装R记要
R在Linux上的安装有一些坑(Windows上安装会方便许多),在这里记录,希望可以减少读者不必要的麻烦.我的服务器是SUSE Linux 64位,无法接入互联网(安全原因,你懂的). 到R官网ht ...
- [Big Data - Kafka] kafka学习笔记:知识点整理
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- pom.xml文件详解
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- redis竞汰数据同步问题解决
Redis 面试的时候遇到过问Redis是如何解决“竞态条件”的,相关知识点总结一下. 乐观锁 所谓竞态条件,举个例子,一个代表点击数的数值hitcount,每个客户点击一次则+1. 没有事务的时候, ...
- Java多线程系列——线程池简介
什么是线程池? 为了避免系统频繁地创建和销毁线程,我们可以让创建的线程进行复用.用线程时从线程池中获取,用完以后不销毁线程,而是归还给线程池. JDK 对线程池的支持 为了更好的控制多线程,JDK 提 ...
- 水塘抽样(Reservoir Sampling)问题
水塘抽样是一系列的随机算法,其目的在于从包含n个项目的集合S中选取k个样本,其中n为一很大或未知的数量,尤其适用于不能把所有n个项目都存放到主内存的情况. 在高德纳的计算机程序设计艺术中,有如下问题: ...
- 常用curl测试命令
1.curl 基础用法 2.curl 常用 3.curl 拓展 1.curl基础用法 语法:# curl [option] [url] curl除了用以请求数据,还可以用来上传下载 -A/--user ...
- 多线程开发之三 GCD
NSThread.NSOperation.GCD 总结: 无论使用哪种方法进行多线程开发,每个线程启动后并不一定立即执行相应的操作,具体什么时候由系统调度(CPU 空闲时就会执行) 更新 UI 应该在 ...