bfprt

//找第k小的数 or 找第n-k大的数
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std; class Solution
{
public:
int getMinKByBFPRT(vector<int>& arr,int k)
{
if(k<||k>arr.size())
return ; vector<int> tmp(arr.begin(),arr.end());
return bfprt(tmp,,tmp.size()-,k);
}
private:
int bfprt(vector<int>& arr,int left,int right,int k)
{
if(left==right)
return arr[left]; //1.得到中位数
int pivot=getMedian(arr,left,right);
//2.根据中位数划分左右区间
vector<int> pivotRange(_partition(arr,left,right,pivot));
//3.找到中位数排序后的位置,判断k是不是中位数所在的下标范围内,如果在就找到了
if(k>=pivotRange[]&&k<=pivotRange[])
return arr[k];
else if(k<pivotRange[])
return bfprt(arr,left,pivotRange[]-,k);
else /*if(k>pivotRange[1])*/
return bfprt(arr,pivotRange[]+,right,k);
//return 0;
}
int getMedian(vector<int>& arr,int left,int right)
{
int nums=right-left+;
int offset=nums%==?:;//每五个为一组,求每组的中位数,放在中位数数组中
vector<int> midArr(nums/+offset);//中位数数组
for(int i=;i<midArr.size();++i)
{
int l=left+i*;
int r=l+;
midArr[i]=getMedianCore(arr,l,min(r,right));
}
//找中位数组的中位数
return bfprt(midArr,,midArr.size()-,midArr.size()/);
}
int getMedianCore(vector<int>& arr, int left, int right)
{
//中位数组排序,返回中间数
sort(arr.begin()+left,arr.begin()+right+);
return arr[(left+right)/+(left+right)%];//奇数和偶数情况
}
vector<int> _partition(vector<int>& arr,int left,int right,int pivot)
{
int small=left-;//small总是指向当前最小的位置,初始化为数组的首元素的前一位置
int big=right+;//big总是指向当前最大的位置,初始化为数组的尾元素的后一位置
int cur=left;
while(cur<big)
{
if(arr[cur]<pivot)
swap(arr[++small],arr[cur++]);
else if(arr[cur]>pivot)
swap(arr[cur],arr[--big]);
else
++cur;
}
vector<int> tmp{small+,big-};
return tmp;
}
}; int main()
{
Solution s;
vector<int> arr{};
cout<<s.getMinKByBFPRT(arr,)<<endl;
return ;
}

bfprt的更多相关文章

  1. BFPRT(线性查找算法)

    BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度.该算法的思想与快速排序思想相似,当然,为使得算法 ...

  2. BFPRT算法

    解决的问题:在一个数组中找到最小的k个数 常规解法:1.排序,输出前k个数,时间复杂度O(n*log(n)). 2.利用一个大小为k的大根堆,遍历数组维持大根堆,最后返回大根堆就可以了,时间复杂度O( ...

  3. 查找第K小的数 BFPRT算法

    出处 http://blog.csdn.net/adong76/article/details/10071297 BFPRT算法是解决从n个数中选择第k大或第k小的数这个经典问题的著名算法,但很多人并 ...

  4. 算法进阶面试题02——BFPRT算法、找出最大/小的K个数、双向队列、生成窗口最大值数组、最大值减最小值小于或等于num的子数组数量、介绍单调栈结构(找出临近的最大数)

    第二课主要介绍第一课余下的BFPRT算法和第二课部分内容 1.BFPRT算法详解与应用 找到第K小或者第K大的数. 普通做法:先通过堆排序然后取,是n*logn的代价. // O(N*logK) pu ...

  5. BFPRT 算法 (TOP-K 问题)——本质就是在利用分组中位数的中位数来找到较快排更合适的pivot元素

    先说快排最坏情况下的时间复杂度为n^2. 正常情况:   最坏的情况下,待排序的记录序列正序或逆序,每次划分只能得到一个比上一次划分少一个记录的子序列,(另一个子序列为空).此时,必须经过n-1次递归 ...

  6. 线性查找算法(BFPRT)

    BFPRT算法的作者是5位真正的大牛(Blum . Floyd . Pratt . Rivest . Tarjan). BFPRT解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素, ...

  7. 经典算法 BFPRT算法详解

    内容: 1.原始问题     =>  O(N*logN) 2.BFPRT算法    => O(N) 1.原始问题 问题描述:给你一个整型数组,返回其中第K小的数 普通解法: 这道题可以利用 ...

  8. 算法搬运之BFPRT算法

    原文连接:http://noalgo.info/466.html BFPRT算法,又称为中位数的中位数算法,由5位大牛(Blum . Floyd . Pratt . Rivest . Tarjan)提 ...

  9. Top K问题-BFPRT算法、Parition算法

    BFPRT算法原理 在BFPTR算法中,仅仅是改变了快速排序Partion中的pivot值的选取,在快速排序中,我们始终选择第一个元素或者最后一个元素作为pivot,而在BFPTR算法中,每次选择五分 ...

随机推荐

  1. linux,windows下日志文件查找关键词

    1.查找 /apps/tomcat/tomcat3/apache-tomcat-7.0.69/logs 目录下已.txt结尾的文件,在文件中搜索关键字 IfcmpEcrService并打印行号 /lo ...

  2. 强化学习4-时序差分TD

    之前讲到强化学习在不基于模型时可以用蒙特卡罗方法求解,但是蒙特卡罗方法需要在每次采样时生产完整序列,而在现实中,我们很可能无法生成完整序列,那么又该如何解决这类强化学习问题呢? 由贝尔曼方程 vπ(s ...

  3. Tap 模拟手势点击坐标

    前言:有时候元素怎么都定位不到,没办法就只能坐标定位了,不过这个坐标定位不准确,换个手机就可能定位不到了,这是一个下下策的定位方式. tap用法 1.tap是模拟手指点击页面上元素语法有两个参数,第一 ...

  4. [Spring]初识Spring-Spring是什么?如何实例化一个Spring容器?

    关于Spring入门的基础知识点 Spring简介 Spring是由Rod Johnson创建的轻量型容器,目的在于简化企业级开发.是一种容器框架 a.降低侵入性 b.提供了IOC(控制反转)和AOP ...

  5. php优秀框架codeigniter学习系列——前言

    php的框架众多,笔者用过的包括thinkphp,CI,smarty,laravel,也用过一些公司自己开发的框架. thinkphp是国人自己开发的,我大概用过一段时间,基本功能都还好,应该也还比较 ...

  6. Windows 窗体设计器生成的代码

    namespace 窗体的浮动及隐藏{    partial class Form1    {        /// <summary>        /// 必需的设计器变量.      ...

  7. 去掉 input type="number" 在浏览器中遗留的图标样式

    input::-webkit-outer-spin-button,input::-webkit-inner-spin-button{  /* chrome */     -webkit-appeara ...

  8. angular 项目 error TS2451: Cannot redeclare block-scoped variable 'ngDevMode'

    删除  node_modules ,用 npm install 就可以了, cnpm install (竟然不行)

  9. 2.8 定位一组元素elements

    2.8 定位一组元素elements 前言    前面的几篇都是讲如何定位一个元素,有时候一个页面上有多个对象需要操作,如果一个个去定位的话,比较繁琐,这时候就可以定位一组对象.webdriver 提 ...

  10. makefile 使用 Tricks

    .phony是表示目标是伪目标,并不生成相应的文件..phony标志的文件总是执行的. 1. 短横(-)与@ @(常用在 echo 之前):make 在执行编译打包等命令前会在命令行输出此命令,称之为 ...