RSA的破解从理论上来讲是大数质数分解,可是就是有一些人另辟蹊径,根据你解密的时间长短就能破解你的RSA私钥。

举一个不恰当但是比较容易理解的例子:

密文0101

私钥0110

明文0100

问题的关键来了,进行&运算时如果有一个0,那么运算的时间为1ms,如果两个都是1,运算的时间是10ms(只是个假设)。

基于以上假设,就可以破解私钥了。先构造一个0001的密文,获取解密的时间,如果是1ms左右,那么对应的位就是0,

如果是10ms左右,对应的1,依次类推,就把整个私钥推断出来了。

如何防范这种攻击呢?

一种最简单有效的方法,每次过来一个密文,先用一个随机数与它&一下,然后再与私钥&,只要随机数是真正的随机数,那么

是无法破解的。注意,是真正的随机数而不是伪随机数。

RSA解密的本质就是幂模运算,也就是x = a ^ b  mod  n ,其中a是明文,b是私钥,n是两个大质数(p-1)(q-1)的积。由于这些

数都特别大,比如b可能有2048位,直接计算是不可行的。计算x的最经典的算法是蒙哥马利算法,用代码表示如下:

int mod(int a,int b,int n){
int result = 1;
int base = a;
while(b>0){
if(b & 1==1){
result = (result*base) % n;
}
base = (base*base) %n;
b>>=1;
}
return result;
}

这个算法从b的最低位循环到最高位,如果是1,需要进行两次模乘运算,如果是0的话则只需要一次。由于这个操作是比较耗时的,所以

0和1对应的时间差别较大。攻击者可以通过观察不同输入对应的解密时间,通过分析统计推断出私钥。而防范RSA时序攻击的方法也是在

解密时加入随机因素,让攻击者无法获取准确的解密时间。

关于随机数

真正意义上的随机数,是很难产生的,因为即使小到原子,它的规律也是有迹可循的。所以我们产生的随机数都是伪随机数,但是伪随机数的

随机性也是不一样的,如果产生的随机数规律性很强,那就很容易被预测到,而如果产生的随机数被预测的难度特别大,那么我们就可以认为

它是真随机数了,只有强度高的随机数用来加解密等操作上才是安全的。

目前大部分操作系统都会提供两种随机数的产生方式,以Linux为例,它提供了/dev/urandom和/dev/random两个特殊设备,可以从里面读

取一定长度的随机数。

(1)/dev/random是blocking pseudo random number generator (阻塞式伪随机数产生器),它是通过网络事件,键盘敲

击事件等物理上随机的事件,收集一些随机bit到熵池来产生随机数。这个随机生成函数可能因为熵池为空而等待,所以需要大量随机数的情

况下它会显得很慢,但诸如产生证书之类的操作需要这种强度的随机数。

(2)/dev/urandom就是unblocking,它不会阻塞,但是产生的随机数不够高,是以时间戳之类的种子来产生随机数。

Java可以用SecureRandom产生随机数,而且可以在JVM参数里配置是使用/dev/random还是/dev/urandom,如果安全性要求改,就用

/dev/random,但是性能是就会有折扣。

出处:

RSA的那些坑

RSA 时序攻击的更多相关文章

  1. Rails项目防止时序攻击

    时序攻击属于侧信道攻击/旁路攻击(Side Channel Attack),侧信道攻击是指利用信道外的信息,比如加解密的速度/加解密时芯片引脚的电压/密文传输的流量和途径等进行攻击的方式,一个词形容就 ...

  2. 【译】 沙箱中的间谍 - 可行的 JavaScript 高速缓存区攻击

    王龑 - MAY 27, 2015 原文连接 The Spy in the Sandbox – Practical Cache Attacks in Javascript 相关论文可在 https:/ ...

  3. [译] 沙箱中的间谍 - 可行的 JavaScript 高速缓存区攻击

    原文 The Spy in the Sandbox – Practical Cache Attacks in Javascript 相关论文可在 https://github.com/wyvernno ...

  4. 密码学奇妙之旅、02 混合加密系统、AES、RSA标准、Golang代码

    CTR 计数器模式 计数器模式CTR是分组密码模式中的一种.通过将逐次累加的计数器进行加密来生成密钥流的流密码.每次加密时会生成一个不同的值来作为计数器的初始值. 可以事先进行加密.解密的准备. 加密 ...

  5. 密码学之RSA基础

    预备数论知识 互质关系 如果两个正整数,除了1以外,没有其他公因子,那么就称这两个数是互质关系 比如:4和7,13和61 欧拉函数 思考:任意给定整数n,在小于等于n的正整数中,有多少个数与n构成互质 ...

  6. RSA学习档案

    RSA 学习档案 基本原理 随机选择两个质数p,q模数n=p*qφ(n)=(p−1)(q−1)选择加密指数e: 1 < e < φ(n)计算机密指数d: e*d % φ(n) = 1c = ...

  7. rsa加密初探

    RSA加密算法初探 RSA加密算法是早期的非对称加密,公钥和私钥分离,公开公钥,通过确保私钥的安全来保证加密内容的安全.由麻省理工学院的罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi ...

  8. 【论文阅读笔记】-针对RSA的短解密指数的密码学分析(Cryptanalysis of Short RSA Secret Exponents)

    目录 1. 介绍 polynomially larger 2. 连分数背景知识 3. 连分数算法 4. 连分数算法在RSA中的应用 5. 例子 6. 对RSA连分数攻击的反制 7. 对于攻击的改进 8 ...

  9. PHP类和函数注释大全

    每次要用PHP的某个功能的时候,都要去查一下,于是决定将PHP所有类和函数都整理出来,加上注释 大致实现 将php.jar文件解压,取出目录stubs 将stubs中的所有php文件中的注释去掉,并做 ...

随机推荐

  1. Kubernetes集群部署之二CA证书制作

    创建TLS证书和秘钥 kubernetes 系统的各组件需要使用 TLS 证书对通信进行加密,本文档使用 CloudFlare 的 PKI 工具集 cfssl 来生成 Certificate Auth ...

  2. CentOS7 yum方式安装MariaDB 10.2.13-1

    注:以下步骤都是以root身份运行. 一.建立mariadb.repo 1,编辑新文件,命令:vim  /etc/yum.repos.d/mariadb.repo 2,输入如下内容,保存退出 [mar ...

  3. 仿迅雷播放器教程 -- C++ windows界面库对比(11)

    从上一篇文章中可以看出,C++的界面方向还很弱,没有任何一个界面库可以一统天下,所以才造成了界面库百家争鸣的情况. 从时间上看: 1.出来最早的是QT,1991年就有了. 2.VC++ 虽然1992年 ...

  4. Android样式的开发:shape篇

    转载请注明:转载自Keegan小钢并标明原文链接:http://keeganlee.me/post/android/20150830微信订阅号:keeganlee_me写于2015-08-30 And ...

  5. 【Dubbo 源码解析】01_Dubbo 设计简介

    Dubbo 设计简介 Dubbo 采用 Microkernel + Plugin (微内核 + 插件)模式,Microkernel 只负责组装 Plugin,Dubbo 自身的功能也是通过扩展点实现的 ...

  6. swagger netframework webapi

    参考:https://blog.csdn.net/wjk343977868/article/details/47086137

  7. Android studio启动后卡在refreshing gradle project

    这个问题几乎每个刚使用Android studio的同学都会碰到过,网上有各式各样的方法,有的说使用本地gradle,我试过多次,每次启动Android studio时还是会检查更新,所以根本上解决的 ...

  8. solus 系统 - 安装编译工具

    将会安装 gcc,make等工具 sudo eopkg install -c system.devel VirtualBox工具 https://solus-project.com/articles/ ...

  9. Linux 下文件

     Linux下文件的三个时间(Atime,Mtime,Ctime) [root@node ~]# stat install.log File: `install.log' Size: Blocks: ...

  10. Ajax请求参数较长导致请求失败

    Ajax请求参数比较长,第5行参数大概1100个字符吧,是接口的请求报文. $.ajax({ type:"POST", url:"${ctx}/test.action?m ...