期望DP

设\(g[i]\)表示前i个的连续1的期望长度,\(h[i]\)表示前i个连续1的长度的平方的期望,\(f[i]\)表示前i个的期望得分

由期望的线性性质,我们可以考虑统计新增一个对答案的贡献

\[E((x+1)^3)-E(x^3)=E(3x^2+3x+1)
\]

然后递推统计即可

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int n;
double g[101000],p[101000],h[101000],f[101000],ans=0;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf",&p[i]);
for(int i=1;i<=n;i++){
g[i]=(g[i-1]+1)*p[i];
h[i]=(h[i-1]+2*g[i-1]+1)*p[i];
f[i]=f[i-1]+(3*h[i-1]+3*g[i-1]+1)*p[i];
// printf("%d %lf %lf %lf\n",i,g[i],h[i],f[i]);
}
printf("%.1lf",f[n]);
return 0;
}

p1654 OSU!的更多相关文章

  1. 洛谷 P1654 OSU! 解题报告

    P1654 OSU! 题目描述 osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有\(n\)次操作,每次操作只有成功与失败之分,成功对应\(1\),失败对应 ...

  2. Luogu P1654 OSU!

    写法和CF235B Let's Play Osu!非常相似.但是这个题厉害就厉害在统计的贡献里面有一个平方的期望,而这个平方的期望和期望的平方是完全不一样的,需要另外统计,逻辑上仔细想一想就会明白. ...

  3. P1654 OSU!-洛谷luogu

    传送门 题目背景 原 <产品排序> 参见P2577 题目描述 osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败 ...

  4. bzoj 4318 || 洛谷P1654 OSU!

    https://www.lydsy.com/JudgeOnline/problem.php?id=4318 https://www.luogu.org/problemnew/show/P1654 看来 ...

  5. Luogu P1654 OSU! | 期望

    题目链接 很妙的一道题. 题目要求$X^3$的期望值. 直接求不好求. 考虑先求出$X$和$X^2$的期望值,然后再求$X^3$的期望值. 迎.刃.而.解. #include<iostream& ...

  6. 洛谷P1654 OSU!_概率与期望

    Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 1000000 ...

  7. LUOGU P1654 OSU! (概率期望)

    传送门 解题思路 首先考虑对于一个点来说,如果这个点是1的话,那么对于答案来说 $(ans+1)^3=ans^3+3*ans^2+3*ans+1$,这对于上一个答案来说其实贡献了 $3*ans^2+3 ...

  8. P1654 OSU! 题解

    \(x\) 为该位置有 \(1\) 的期望. 统计两个值 : \(suma\) 和 \(sumb\). \(suma\) 表示连续 \(X\) 个 \(1\) , \(X\) 的平方的期望, \(su ...

  9. yd的汇总

    因为是我这只蒟蒻个人的汇总嘛,可能有些奇♂怪的东西或者不规范的语言出现啦,见谅见谅 搬了一些到知识汇总里,删了一些过时和无用的,少了好多=.= 1.STL_queue 经实践验证,!qs.empty( ...

随机推荐

  1. linux基础操作

    1.pwd 2.clear 3.who 4.cal 5.uname 6.wc 7.man在线帮助命令 8.--help.info.whatis 9.使用su命令以root身份进入linux 10.Sh ...

  2. Java输入输出流(IO)-----文件类File详解

       1.java.io.File类简介 凡是与输入.输出相关的类.接口等都定义在java.io包下 File是一个类,可以有构造器创建其对象.此对象对应着一个文件(.txt .avi .doc .p ...

  3. 【Hadoop学习之八】MapReduce开发

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 伪分布式:HDFS和YARN 伪分 ...

  4. 使用Groovy+Spock构建可配置的订单搜索接口测试用例集

    概述 测试是软件成功上线的安全网.基本的测试包含单元测试.接口测试.在 "使用Groovy+Spock轻松写出更简洁的单测" 一文中已经讨论了使用GroovySpock编写简洁的单 ...

  5. javascript常用积累

    一.JS动画与动作不一致解决: if(!$( "#handle").is(":animated")){ //判断元素是否处于动画状态 } 二.停止事件冒泡 ev ...

  6. usdt钱包开发,比特币协议 Omni 层协议 USDT

    usdt钱包开发 比特币协议 -> Omni 层协议 -> USDT USDT是基于比特币omni协议的一种代币: https://omniexplorer.info/asset/31 I ...

  7. [转载]ORA-01502错误成因和解决方法

    检查一下索引状态,我们会注意到索引已经是“UNUSABLE”了.SQL> select index_name,index_type,tablespace_name,table_type,stat ...

  8. [转载]基于UML的需求分析和系统设计(完整案例和UML图形演示)

    小序: 从学生时代就接触到UML,几年的工作中也没少使用,各种图形的概念.图形的元素和属性,以及图形的画法都不能说不熟悉.但是怎样在实际中有效地使用UML使之发挥应有的作用,怎样捕捉用户心中的需求并转 ...

  9. Step5:SQL Server 跨网段(跨机房)FTP复制

    一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 搭建过程(Process) 注意事项(Attention) 参考文献(References) ...

  10. 在vim编辑器python实现tab补全功能

    在vim编辑器中实现python tab补全插件有Pydiction,Pydiction可以实现下面python代码的自动补全: 1. 简单python关键词补全 2. python函数补全带括号 3 ...