BZOJ 4399 魔法少女LJJ(线段树合并)
题意
https://www.lydsy.com/JudgeOnline/problem.php?id=4399
思路
码农题,需要一定代码功底。方法很暴力,先将权值离散,表示在线段树里储存的位置,每个连通块用一棵动点线段树存储,合并两个连通块直接对两个动点线段树进行合并,查询操作在当前连通块的线段树上进行,只不过有询问乘积大小,直接权值取原权值的 \(\ln\) ,比较和的大小即可。
现在分析线段树合并的复杂度,举一个最基本的例子:权值为\([1,n]\) ,\(n\) 棵动点线段树,每个线段树插入了一个权值,那么总共有 \(n\log n\) 个点,而每一次合并相当于少掉了一个点,那么合并完这 \(n\) 棵线段树后复杂度就是消失的点的个数,不会超过总共的点数,所以复杂度是 \(n \log n\) 的。
类似的,对最一般的情况,也是一样的分析方法,最后得出线段树合并的复杂度为节点个数的结论。
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=4e5+5;
const int NN=N*12;
struct SegmentTree
{
struct node
{
int cnt;double sum;
node operator +(const node &_)const
{
return (node){cnt+_.cnt,sum+_.sum};
}
};
node nd[NN];
int lson[NN],rson[NN],rt[N],tot;
int &operator [](const int x){return rt[x];}
void build()
{
memset(rt,0,sizeof(rt));
nd[tot=0]=(node){0,0};
lson[0]=rson[0]=0;
}
void create(int &k)
{
if(!k)k=++tot,nd[k]=nd[0],lson[k]=rson[k]=0;
}
void update(int &k,int x,int addcnt,double addsum,int l,int r)
{
create(k);
if(l==r)
{
nd[k].cnt+=addcnt;
nd[k].sum+=addsum;
return;
}
int mid=(l+r)>>1;
if(x<=mid)update(lson[k],x,addcnt,addsum,l,mid);
else update(rson[k],x,addcnt,addsum,mid+1,r);
nd[k]=nd[lson[k]]+nd[rson[k]];
}
int sweep_off(int &k,int L,int R,int l,int r)
{
if(!k)return 0;
if(L<=l&&r<=R){int res=nd[k].cnt;k=0;return res;}
int mid=(l+r)>>1,res=0;
if(L<=mid)res+=sweep_off(lson[k],L,R,l,mid);
if(R>mid)res+=sweep_off(rson[k],L,R,mid+1,r);
nd[k]=nd[lson[k]]+nd[rson[k]];
return res;
}
int querycnt(int k){return nd[k].cnt;}
double querysum(int k){return nd[k].sum;}
int queryKth(int k,int K,int l,int r)
{
if(l==r)return l;
int mid=(l+r)>>1;
if(nd[lson[k]].cnt>=K)return queryKth(lson[k],K,l,mid);
else return queryKth(rson[k],K-nd[lson[k]].cnt,mid+1,r);
}
void merge(int &x,int y,int l,int r)
{
if(!x||!y){x=(x|y);return;}
if(l==r){nd[x]=nd[x]+nd[y];return;}
int mid=(l+r)>>1;
merge(lson[x],lson[y],l,mid);
merge(rson[x],rson[y],mid+1,r);
nd[x]=nd[lson[x]]+nd[rson[x]];
}
}ST;
int n,m,fa[N];
int op[N],a[N],b[N];
int disc[N],tot;
double logdisc[N];
int getfa(int k){return k==fa[k]?k:fa[k]=getfa(fa[k]);}
int main()
{
scanf("%d",&m);
FOR(i,1,m)
{
scanf("%d%d",&op[i],&a[i]);
if(op[i]!=1&&op[i]!=7)scanf("%d",&b[i]);
}
FOR(i,1,m)
{
if(op[i]==1)disc[++tot]=a[i];
else if(op[i]==3||op[i]==4)disc[++tot]=b[i];
}
sort(disc+1,disc+1+tot);
tot=unique(disc+1,disc+1+tot)-disc-1;
FOR(i,1,m)
{
if(op[i]==1)a[i]=lower_bound(disc+1,disc+1+tot,a[i])-disc;
else if(op[i]==3||op[i]==4)b[i]=lower_bound(disc+1,disc+1+tot,b[i])-disc;
}
FOR(i,1,tot)logdisc[i]=log(disc[i]);
ST.build();
FOR(i,1,m)
{
if(op[i]==1)
{
n++;
fa[n]=n;
ST.update(ST[n],a[i],1,logdisc[a[i]],1,tot);
}
else if(op[i]==2)
{
a[i]=getfa(a[i]),b[i]=getfa(b[i]);
if(a[i]==b[i])continue;
ST.merge(ST[a[i]],ST[b[i]],1,tot);
fa[b[i]]=a[i];
}
else if(op[i]==3)
{
if(b[i]==1)continue;
a[i]=getfa(a[i]);
int cnt=ST.sweep_off(ST[a[i]],1,b[i]-1,1,tot);
ST.update(ST[a[i]],b[i],cnt,cnt*logdisc[b[i]],1,tot);
}
else if(op[i]==4)
{
if(b[i]==tot)continue;
a[i]=getfa(a[i]);
int cnt=ST.sweep_off(ST[a[i]],b[i]+1,tot,1,tot);
ST.update(ST[a[i]],b[i],cnt,cnt*logdisc[b[i]],1,tot);
}
else if(op[i]==5)
{
a[i]=getfa(a[i]);
printf("%d\n",disc[ST.queryKth(ST[a[i]],b[i],1,tot)]);
}
else if(op[i]==6)
{
a[i]=getfa(a[i]),b[i]=getfa(b[i]);
if(ST.querysum(ST[a[i]])>ST.querysum(ST[b[i]]))
puts("1");
else puts("0");
}
else if(op[i]==7)
{
a[i]=getfa(a[i]);
printf("%d\n",ST.querycnt(ST[a[i]]));
}
}
return 0;
}
BZOJ 4399 魔法少女LJJ(线段树合并)的更多相关文章
- BZOJ.4399.魔法少女LJJ(线段树合并)
BZOJ 注意\(c\leq7\)→_→ 然后就是裸的权值线段树+线段树合并了. 对于取\(\max/\min\)操作可以直接区间修改清空超出范围的值,然后更新到对应位置上就行了(比如对\(v\)取\ ...
- BZOJ 4399: 魔法少女LJJ 线段树合并 + 对数
Description 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着 ...
- BZOJ 4399: 魔法少女LJJ(线段树)
传送门 解题思路 出题人真会玩..操作\(2\)线段树合并,然后每棵线段树维护元素个数和.对于\(6\)这个询问,因为乘积太大,所以要用对数.时间复杂度\(O(nlogn)\) 代码 #include ...
- BZOJ4399魔法少女LJJ——线段树合并+并查集
题目描述 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着醉人的奶浆味: ...
- 【BZOJ4399】魔法少女LJJ 线段树合并
[BZOJ4399]魔法少女LJJ Description 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的 ...
- bzoj4399 魔法少女LJJ 线段树合并
只看题面绝对做不出系列.... 注意到\(c \leqslant 7\),因此不会有删边操作(那样例删边干嘛) 注意到\(2, 5\)操作十分的有趣,启示我们拿线段树合并来做 操作\(7\)很好处理 ...
- bzoj4399 魔法少女LJJ 线段树合并+线段树二分+并查集
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4399 题解 毒瘤题 \(9\) 种操作还有支持动态图的连通性 仔细读题 $ c<=7$. ...
- bzoj 4399 魔法少女LJJ
4399: 魔法少女LJJ Time Limit: 20 Sec Memory Limit: 162 MBhttp://www.lydsy.com/JudgeOnline/problem.php?i ...
- 魔法少女 LJJ——线段树
题目 [题目描述] 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女 LJJ 已经觉得自己见过世界上的所有稀奇古怪的事情了. LJJ 感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处 ...
随机推荐
- tcp/ip 3次握手和4次挥手
tcp/ip 3次握手和4次挥手
- vs实现数据库数据迁移
public ActionResult About() { List<ChangeData.Models.old.adsinfo> adsinfo_new = new List<Mo ...
- java 泛型E T ?的区别
Java泛型中的标记符含义: E - Element (在集合中使用,因为集合中存放的是元素) T - Type(Java 类) K - Key(键) V - Value(值) N - Number ...
- EasyUI添加进度条
EasyUI添加进度条 添加进度条重点只有一个,如何合理安排进度刷新与异步调用逻辑,假如我们在javascript代码中通过ajax或者第三方框架dwr等对远程服务进行异步调用,实现进度条就需要做到以 ...
- 系统批量运维管理器Fabric详解
系统批量运维管理器Fabric详解 Fabrici 是基于python现实的SSH命令行工具,简化了SSH的应用程序部署及系统管理任务,它提供了系统基础的操作组件,可以实现本地或远程shell命令,包 ...
- SQLServer将服务器A表写到服务器B表
不同服务器数据库之间的数据操作 --创建链接服务器 exec sp_addlinkedserver 'ITSV ', ' ', 'SQLOLEDB ', '远程服务器名或ip地址 ' ...
- 【独家】终生受用的Redis高可用技术解决方案大全
最近很多朋友向我咨询关于高可用的方案的优缺点以及如何选择合适的方案线上使用,刚好最近在给宜人贷,光大银行做企业内训的时候也详细讲过,这里我再整理发出来,供大家参考,如有不妥之处,欢迎批评指正,也欢迎推 ...
- Golang并发编程优势与核心goroutine及注意细节
Go语言为并发编程而内置的上层API基于CSP(communication sequential processes,顺序通信进程)模型.这就意味着显式锁都是可以避免的,比如资源竞争,比如多个进程同时 ...
- div容器中内容垂直居中
#box{ width:200px; height:200px; line-height: 200px; vertical-align: middle; margin: 5px; background ...
- spring 配置文件属性设置默认值以及读取环境变量值
在 Spring 中为 javabean 注入属性文件中的属性值一般人都知道的,可以通过 org.springframework.beans.factory.config.PropertyPlaceh ...