UVA - 11149 (矩阵快速幂+倍增法)
第一道矩阵快速幂的题;模板题;
#include<stack>
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; #define INF 0x3f3f3f3f
typedef long long ll;
const ll maxn = ;
int n;
int m; ll euler[maxn];
ll fun_[maxn]; struct node
{
int a[][];
node()
{
memset(a,,sizeof(a));
}
node operator *(const node& m2) const
{
node m1;
for (int i=; i<n; i++)
{
for (int j=; j<n; j++)
{
m1.a[i][j]=;
for (int k=; k<n; k++)
{
m1.a[i][j]+=a[i][k]*m2.a[k][j];
m1.a[i][j]%=;
}
}
}
return m1;
}
node operator +(const node& m2) const
{
node m1;
for (int i=; i<n; i++)
{
for (int j=; j<n; j++)
{
m1.a[i][j]=a[i][j]+m2.a[i][j];
m1.a[i][j]%=;
}
}
return m1;
} } A,E; void init()
{
memset(E.a,,sizeof(E.a));
for (int i=;i<n;i++)
{
// for (int j=0;j<n;j++)
// {
// if (i==j)
E.a[i][i]=;
// }
}
} node quick_mod_(node c,int k)
{
node e=E;
while (k)
{
if(k&) e=e*c;
c = c*c;
k>>=;
}
return e;
} node find_(int k)
{
if (k==)
{
return A;
}
if(k%==)
{
k/=;
node nod=quick_mod_(A,k)+E;
nod=nod*find_(k);
return nod;
}
else
{
node t=quick_mod_(A,k);
k--;
k/=;
node nod=quick_mod_(A,k)+E;
nod=nod*find_(k);
//cout<<nod.a[0][3]<<endl;
nod = nod +t;
return nod;
}
} void print_(node p)
{
for (int i=;i<n;i++)
{
for (int j=;j<n;j++)
{
if (!j)
cout<<p.a[i][j];
else
cout<<" "<<p.a[i][j];
}cout<<endl;
}
} int main()
{
int kase=; while (cin>>n>>m&&(m+n))
{
init();
if (kase) cout<<endl;
for (int i=; i<n; i++)
{
for (int j=; j<n; j++)
{
cin>>A.a[i][j];
A.a[i][j]%=;
}
}
node q=find_(m);
// cout<<endl;
// cout<<q.a[0][0]<<" "<<q.a[0][1]<<" "<<q.a[0][2]<<endl<<endl;
print_(q);
kase++;
}
return ;
} /*
3 2
0 2 0
0 0 2
0 0 0 */
倍增法的 解释:
UVA - 11149 (矩阵快速幂+倍增法)的更多相关文章
- BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...
- 2019 牛客暑期多校 B generator 1 (矩阵快速幂+倍增)
题目:https://ac.nowcoder.com/acm/contest/885/B 题意:给你x0,x1,让你求出xn,递推式时xn=a*xn-1+b*xn-2 思路:这个n特别大,我自己没有摸 ...
- UVa 11149 矩阵的幂(矩阵倍增法模板题)
https://vjudge.net/problem/UVA-11149 题意: 输入一个n×n矩阵A,计算A+A^2+A^3+...A^k的值. 思路: 矩阵倍增法. 处理方法如下,一直化简下去直到 ...
- UVa 10870 & 矩阵快速幂
题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可 ...
- UVa 10870 (矩阵快速幂) Recurrences
给出一个d阶线性递推关系,求f(n) mod m的值. , 求出An-dv0,该向量的最后一个元素就是所求. #include <iostream> #include <cstdio ...
- POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...
- 2018.11.08 NOIP模拟 景点(倍增+矩阵快速幂优化dp)
传送门 首先按照题意构造出转移矩阵. 然后可以矩阵快速幂求出答案. 但是直接做是O(n3qlogm)O(n^3qlogm)O(n3qlogm)的会TTT掉. 观察要求的东西发现我们只关系一行的答案. ...
- uva 10518 - How Many Calls?(矩阵快速幂)
题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
随机推荐
- div 只显示两行超出部分隐藏
; -webkit-box-orient: vertical;line-height: 26px } <td rowspan="2" colspan="2" ...
- Poj3696 The Lukiest Number
传送门 Solution 懒得写啦 Code #include<iostream> #include<cstdio> #include<cmath> #define ...
- retrofit 基础使用
1.先导入依赖 加上网络权限 <uses-permission android:name="android.permission.INTERNET" /> 2.创建接口 ...
- LOJ 3093: 洛谷 P5323: 「BJOI2019」光线
题目传送门:LOJ #3093. 题意简述: 有 \(n\) 面玻璃,第 \(i\) 面的透光率为 \(a\),反射率为 \(b\). 问把这 \(n\) 面玻璃按顺序叠在一起后,\(n\) 层玻璃的 ...
- Linux压缩和解压缩类指令
⒈gzip ①gzip 文件 压缩文件,只能将文件压缩为*.gz文件 ②gunzip 文件.gz 用于解压文件 ⒉zip ①zip [选项] xxx.zip 需要压缩的内容 压缩文件和目录 常用选项: ...
- JS判断页面是否出现滚动条
今天无聊,帮一个网友解决一个很无聊的问题,用JS判断页面是否出现滚动条,在网上看了一些代码,经过验证并不起作用,下面是在网上搜索到的代码: 当可视区域小于页面的实际高度时,判定为出现滚动条,即: if ...
- awk技巧【转】
转自 awk技巧(如取某一行数据中的倒数第N列等) - 散尽浮华 - 博客园 https://www.cnblogs.com/kevingrace/p/8481965.html 使用awk取某一行数据 ...
- 调用链系列一、Zipkin架构介绍、Springboot集承(springmvc,HttpClient)调用链跟踪、Zipkin UI详解
1.Zipkin是什么 Zipkin分布式跟踪系统:它可以帮助收集时间数据,解决在microservice架构下的延迟问题:它管理这些数据的收集和查找:Zipkin的设计是基于谷歌的Google Da ...
- NTFS文件系统简介
原文地址:http://www.cnblogs.com/watertao/archive/2011/11/28/2266595.html 1.简介 NTFS(New Technology File S ...
- C:详解C中volatile关键字
原文地址:http://www.cnblogs.com/yc_sunniwell/archive/2010/06/24/1764231.html volatile提醒编译器它后面所定义的变量随时都有可 ...