<题目链接>

题目大意:

有向图,求从起点1到每个点的最短路然后再回到起点1的最短路之和。

解题分析:

在求每个点到1点的最短路径时,如果仅仅只是遍历每个点,对它们每一个都进行一次最短路算法,那么即使是用了堆优化的dijkstra,时间复杂度也高达$O(n^2log(n))$,而本题有1000000个点,毫无疑问,这种想法必然是不可行的,所以我们可以采用逆向思维,将图中的每一条有向边全部反向,然后以1为起点,仅做一次dijkstra,就能得到1到所有点的最短距离,即反向前的,所有点到1点的最短距离。所以,本题的正解应为:先以1为起点,做一次dijkstra,算出,1到所有点的最短距离,然后将边反向,再以1为起点,做一次dijkstra,此时就能得到,其他所有点到1的最短距离,将所有的最短距离相加,即为答案。时间复杂度为$O(nlogn)$。

 #include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <iostream>
using namespace std; #define INF 0x3f3f3f3f
const int maxn =+; int n,m;
struct Edge{
int to;
int next;
int w;
}; Edge edge[maxn],redge[maxn]; struct NODE{
int index;
int dis;
bool operator < (NODE const &tmp)const{
return dis>tmp.dis;
}
}d[maxn]; int dist[maxn];
int cnt,rcnt,head1[maxn],head2[maxn],vis[maxn]; void init(){
memset(head1,-,sizeof(head1));
memset(head2,-,sizeof(head2));
cnt=,rcnt=;
} void add1(int u,int v,int w){
edge[cnt].to=v;edge[cnt].w=w;
edge[cnt].next=head1[u];
head1[u]=cnt++;
} void add2(int u,int v,int w){
redge[rcnt].to=v;redge[rcnt].w=w;
redge[rcnt].next=head2[u];
head2[u]=rcnt++;
} void dijkstra1(int st){
for(int i=;i<=n;i++){
vis[i]=;d[i].dis=INF,d[i].index=i;
} priority_queue<NODE>q;
d[st].dis=;q.push(d[st]);
while(!q.empty()){
int u=q.top().index;
q.pop();
if(vis[u])continue;
vis[u]=;
for(int i=head1[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(d[v].dis>d[u].dis+edge[i].w){
d[v].dis=d[u].dis+edge[i].w;
q.push(d[v]);
}
}
}
} void dijkstra2(int st){ //因为正、反向边的edge[],和head[]散组不同,所以要将另外再写一个dijkstra函数
for(int i=;i<=n;i++){
vis[i]=;d[i].dis=INF,d[i].index=i;
} priority_queue<NODE>q;
d[st].dis=;q.push(d[st]);
while(!q.empty()){
int u=q.top().index;
q.pop();
if(vis[u])continue;
vis[u]=;
for(int i=head2[u];i!=-;i=redge[i].next){
int v=redge[i].to;
if(d[v].dis>d[u].dis+redge[i].w){
d[v].dis=d[u].dis+redge[i].w;
q.push(d[v]);
}
}
}
} int main(){
int t;scanf("%d",&t);
while(t--){
scanf("%d %d",&n,&m);
init();
for(int i=;i<=m;i++){
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
add1(a,b,c); //存储该有向图正确的边
add2(b,a,c); //将该有向图的所有边反向存储
} long long sum=; dijkstra1(); //边未反向之前,求出1到所有点的最短路
for(int i=;i<=n;i++){
sum+=d[i].dis;
} dijkstra2(); //将边反向后,求出所有点到1点的最短路
for(int i=;i<=n;i++){
sum+=d[i].dis;
}
printf("%lld\n",sum);
}
return ;
}

2018-08-27

POJ-1511 Invitation Cards (单源最短路+逆向)的更多相关文章

  1. Invitation Cards POJ - 1511 (双向单源最短路)

    In the age of television, not many people attend theater performances. Antique Comedians of Malidine ...

  2. POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)

    POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...

  3. poj 1511 Invitation Cards (最短路)

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 33435   Accepted: 111 ...

  4. POJ 1511 Invitation Cards(单源最短路,优先队列优化的Dijkstra)

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 16178   Accepted: 526 ...

  5. poj 1511 Invitation Cards(最短路中等题)

    In the age of television, not many people attend theater performances. Antique Comedians of Malidine ...

  6. POJ 1511 Invitation Cards (最短路spfa)

    Invitation Cards 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/J Description In the age ...

  7. [POJ] 1511 Invitation Cards

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 18198   Accepted: 596 ...

  8. DIjkstra(反向边) POJ 3268 Silver Cow Party || POJ 1511 Invitation Cards

    题目传送门 1 2 题意:有向图,所有点先走到x点,在从x点返回,问其中最大的某点最短路程 分析:对图正反都跑一次最短路,开两个数组记录x到其余点的距离,这样就能求出来的最短路以及回去的最短路. PO ...

  9. POJ 1511 Invitation Cards (spfa的邻接表)

    Invitation Cards Time Limit : 16000/8000ms (Java/Other)   Memory Limit : 524288/262144K (Java/Other) ...

  10. Poj 1511 Invitation Cards(spfa)

    Invitation Cards Time Limit: 8000MS Memory Limit: 262144K Total Submissions: 24460 Accepted: 8091 De ...

随机推荐

  1. python线程之condition

    cond = threading.Condition() # 类似lock.acquire() cond.acquire() # 类似lock.release() cond.release() # 等 ...

  2. shiroWeb项目-记住我(自动登陆实现)(十五)

    用户登陆选择“自动登陆”本次登陆成功会向cookie写身份信息,下次登陆从cookie中取出身份信息实现自动登陆. 用户身份实现java.io.Serializable接口便于反序列化 package ...

  3. Python模块学习 - fnmatch & glob

    介绍 fnmatch 和 glob 模块都是用来做字符串匹配文件名的标准库. fnmatch模块 大部分情况下使用字符串匹配查找特定的文件就能满足需求,如果需要更加灵活的字符串匹配,就没有办法了,这里 ...

  4. ARMV8 datasheet学习笔记1:预备知识

    1. 前言 ARMv8的架构继承以往ARMv7与之前处理器技术的基础; 除了支持现有的16/32bit的Thumb2指令外,也向前兼容现有的A32(ARM 32bit)指令集. 基于64bit的AAr ...

  5. 【sky第二期--PID算法】--【智能车论坛】

    [sky第二期--PID算法] 想学PID的可以来[智能车论坛]这里有我发布的资料http://bbs.tekbots.eefocus.com/forum.php?mod=viewthread& ...

  6. 移动端中遇到的坑(bug)!!!

    1.模拟单选点击的时候,在ios手机下,点击下面的内容选择,会出现页面闪一闪!! 解决方案:样式重置html的时候加上这句  -webkit-tap-highlight-color: rgba(0, ...

  7. __ATTRIBUTE__ 知多少?

    GNU C 的一大特色就是__attribute__ 机制.__attribute__ 可以设置函数属性(Function Attribute ).变量属性(Variable Attribute )和 ...

  8. Windows 10 的一些快捷键

    Win键 + Q: 呼出[Cortana] Win键 + W:呼出[Windows INNK 工作区] Win键 + E: 呼出[资源管理器] Win键 + R: 呼出[运行] Win键 + A: 呼 ...

  9. getOutputStream与getWriter方法

    getOutputStream方法用于返回Servlet引擎创建的字节输出流对象,Servlet程序可以按字节形式输出响应正文.getWriter方法用于返回Servlet引擎创建的字符输出流对象,S ...

  10. dblink 退出 session

    以dblink的表现为例,我一直认为dblink的远程连接session仅在操作(select,dml)发生时短期存在,在操作完成后依据一定条件保留或退出. 而事实并非如此,随便使用一个远程查询语句如 ...