添加kruskal算法:

 #ifndef GRAPH_H
#define GRAPH_H #include "Object.h"
#include "SharedPointer.h"
#include "Array.h"
#include "DynamicArray.h"
#include "LinkQueue.h"
#include "LinkStack.h"
#include "Sort.h" namespace DTLib
{ template < typename E >
struct Edge : public Object
{
int b;
int e;
E data; Edge(int i=-, int j=-)
{
b = i;
e = j;
} Edge(int i, int j, const E& value)
{
b = i;
e = j;
data = value;
} bool operator == (const Edge<E>& obj)
{
return (b == obj.b) && (e == obj.e); //在这里不关注权值大小
} bool operator != (const Edge<E>& obj)
{
return !(*this == obj);
} bool operator < (const Edge<E>& obj)
{
return (data < obj.data);
} bool operator > (const Edge<E>& obj)
{
return (data > obj.data);
}
}; template < typename V, typename E >
class Graph : public Object
{
protected:
template < typename T >
DynamicArray<T>* toArray(LinkQueue<T>& queue)
{
DynamicArray<T>* ret = new DynamicArray<T>(queue.length()); if( ret != NULL )
{
for(int i=; i<ret->length(); i++, queue.remove())
{
ret->set(i, queue.front());
}
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create ret object...");
} return ret;
} SharedPointer< Array<Edge<E> > > getUndirectedEdges()
{
DynamicArray<Edge<E>>* ret = NULL; if( asUndirected() )
{
LinkQueue<Edge<E>> queue; for(int i=; i<vCount(); i++)
{
for(int j=i; j<vCount(); j++)
{
if( isAdjacent(i, j) )
{
queue.add(Edge<E>(i, j, getEdge(i, j)));
}
}
} ret = toArray(queue);
}
else
{
THROW_EXCEPTION(InvalidOperationException, "This function is for undirected graph only...");
} return ret;
} int find(Array<int>& p, int v)
{
while( p[v] != -)
{
v = p[v];
} return v;
}
public:
virtual V getVertex(int i) = ;
virtual bool getVertex(int i, V& value) = ;
virtual bool setVertex(int i, const V& value) = ;
virtual SharedPointer< Array<int> > getAdjacent(int i) = ;
virtual bool isAdjacent(int i, int j) = ;
virtual E getEdge(int i, int j) = ;
virtual bool getEdge(int i, int j, E& value) = ;
virtual bool setEdge(int i, int j, const E& value) = ;
virtual bool removeEdge(int i, int j) = ;
virtual int vCount() = ;
virtual int eCount() = ;
virtual int OD(int i) = ;
virtual int ID(int i) = ; virtual int TD(int i)
{
return ID(i) + OD(i);
} bool asUndirected()
{
bool ret = true; for(int i=; i<vCount(); i++)
{
for(int j=; j<vCount(); j++)
{
if( isAdjacent(i, j) )
{
ret = ret && isAdjacent(j, i) && (getEdge(i, j) == getEdge(j, i));
}
}
} return ret;
} SharedPointer< Array< Edge<E > > > prim(const E& LIMIT, const bool MINIUM = true) //参数为理论上的最大权值
{
LinkQueue< Edge<E> > ret; if( asUndirected() )
{
DynamicArray<int> adjVex(vCount());
DynamicArray<bool> mark(vCount());
DynamicArray<E> cost(vCount());
SharedPointer< Array<int> > aj = NULL;
bool end = false;
int v = ; for(int i=; i<vCount(); i++)
{
adjVex[i] = -;
mark[i] = false;
cost[i] = LIMIT;
} mark[v] = true; aj = getAdjacent(v); for(int j=; j<aj->length(); j++)
{
cost[(*aj)[j]] = getEdge(v, (*aj)[j]);
adjVex[(*aj)[j]] = v;
} for(int i=; (i<vCount()) && !end; i++)
{
E m = LIMIT;
int k = -; for(int j=; j<vCount(); j++)
{
if( !mark[j] && (MINIUM ? (cost[j] < m) : (cost[j] > m)))
{
m = cost[j];
k = j;
}
} end = (k == -); if( !end )
{
ret.add(Edge<E>(adjVex[k], k, getEdge(adjVex[k], k))); mark[k] = true; aj = getAdjacent(k); for(int j=; j<aj->length(); j++)
{
if( !mark[(*aj)[j]] && (MINIUM ? (getEdge(k, (*aj)[j]) < cost[(*aj)[j]]) : (getEdge(k, (*aj)[j]) > cost[(*aj)[j]])) )
{
cost[(*aj)[j]] = getEdge(k, (*aj)[j]);
adjVex[(*aj)[j]] = k;
}
}
}
}
}
else
{
THROW_EXCEPTION(InvalidOperationException, "Prim operator is for undirected graph only...");
} if( ret.length() != (vCount() - ) )
{
THROW_EXCEPTION(InvalidOperationException, "No enough edge for prim operation...");
} return toArray(ret);
} SharedPointer< Array<Edge<E> > > kruskal(const bool MINMUM = true)
{
LinkQueue< Edge<E> > ret; SharedPointer< Array< Edge<E> > > edges = getUndirectedEdges(); DynamicArray<int> p(vCount()); //前驱标记数组 for(int i=; i<p.length(); i++)
{
p[i] = -;
} Sort::Shell(*edges, MINMUM); for(int i=; (i<edges->length()) && (ret.length() < (vCount() - )); i++)
{
int b = find(p, (*edges)[i].b);
int e = find(p, (*edges)[i].e); if( b != e )
{
p[e] = b; ret.add((*edges)[i]);
}
} if( ret.length() != (vCount() - ) )
{
THROW_EXCEPTION(InvalidOperationException, "No enough edges for Kruskal operation...");
} return toArray(ret);
} SharedPointer< Array<int> > BFS(int i)
{
DynamicArray<int>* ret = NULL; if( ( <= i) && (i < vCount()) )
{
LinkQueue<int> q;
LinkQueue<int> r;
DynamicArray<bool> visited(vCount()); for(int i=; i<visited.length(); i++)
{
visited[i] = false;
} q.add(i); while( q.length() > )
{
int v = q.front(); q.remove(); if( !visited[v] )
{
SharedPointer< Array<int> > aj = getAdjacent(v); for(int j=; j<aj->length(); j++)
{
q.add((*aj)[j]);
} r.add(v); visited[v] = true;
}
} ret = toArray(r);
}
else
{
THROW_EXCEPTION(InvalidParameterException, "Index i is invalid...");
} return ret;
} SharedPointer< Array<int> > DFS(int i)
{
DynamicArray<int>* ret = NULL; if( ( <= i) && (i < vCount()) )
{
LinkStack<int> s;
LinkQueue<int> r;
DynamicArray<bool> visited(vCount()); for(int j=; j<visited.length(); j++)
{
visited[j] = false;
} s.push(i); while( s.size() > )
{
int v = s.top(); s.pop(); if( !visited[v] )
{
SharedPointer< Array<int> > aj = getAdjacent(v); for(int j=aj->length() - ; j>=; j--)
{
s.push((*aj)[j]);
} r.add(v); visited[v] = true;
}
} ret = toArray(r);
}
else
{
THROW_EXCEPTION(InvalidParameterException, "Index i is invalid...");
} return ret;
} }; } #endif // GRAPH_H

测试程序如下:

 #include <iostream>
#include "MatrixGraph.h"
#include "ListGraph.h" using namespace std;
using namespace DTLib; template< typename V, typename E >
Graph<V, E>& GraphEasy()
{
static MatrixGraph<, V, E> g; g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); return g;
} template< typename V, typename E >
Graph<V, E>& GraphComplex()
{
static ListGraph<V, E> g(); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); return g;
} int main()
{
Graph<int, int>& g = GraphComplex<int, int>(); SharedPointer< Array< Edge<int> > > sa = g.kruskal(); int w = ; for(int i=; i<sa->length(); i++)
{
w += (*sa)[i].data;
cout << (*sa)[i].b << " " << (*sa)[i].e << " " << (*sa)[i].data << endl;
} cout << "Weight: " << w << endl; return ;
}

结果如下:

小结:

第七十七课 最小生成树(Kruskal)的更多相关文章

  1. python六十七课——网络编程(基础知识了解)

    网络编程: 什么是网络编程? 网络:它是一种隐形的媒介:可以将多台计算机使用(将它们连接到一起) 网络编程:将多台计算机之间可以相互通信了(做数据交互) 一旦涉及到网络编程,划分为两个方向存在,一方我 ...

  2. NeHe OpenGL教程 第四十七课:CG顶点脚本

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  3. NeHe OpenGL教程 第三十七课:卡通映射

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  4. NeHe OpenGL教程 第二十七课:影子

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  5. NeHe OpenGL教程 第十七课:2D图像文字

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  6. 第三百七十七节,Django+Xadmin打造上线标准的在线教育平台—apps目录建立,以及数据表生成

    第三百七十七节,Django+Xadmin打造上线标准的在线教育平台—apps目录建立,以及数据表生成 apps目录建立 我们创建一个apps目录,将所有的app放到apps目录里去,这样方便管理,也 ...

  7. centos Linux下磁盘管理 parted,df ,du,fdisk,partprobe,mkfs.ext4,mount,/etc/fstab,fsck,e2fsck,mk2efs,tmpfs ,nr_inodes, LVM,传统方式扩容文件系统 第七节课

    centos Linux下磁盘管理   parted,df ,du,fdisk,partprobe,mkfs.ext4,mount,/etc/fstab,fsck,e2fsck,mk2efs,tmpf ...

  8. “全栈2019”Java第七十七章:抽象内部类与抽象静态内部类详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  9. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

随机推荐

  1. GetMapping 和 PostMapping最大的差别(转)

    原文地址:GetMapping 和 PostMapping  Spring4.3中引进了{@GetMapping.@PostMapping.@PutMapping.@DeleteMapping.@Pa ...

  2. git如何merge github forked repository里的代码更新?(转)

    参考内容:git如何merge github forked repository里的代码更新? [refer to ]http://www.haojii.com/2011/08/how-to-git- ...

  3. python操作文件(增、删、改、查)

    内容 global log 127.0.0.1 local2 daemon maxconn 256 log 127.0.0.1 local2 info defaults log global mode ...

  4. Windows设置.txt文件默认打开程序

    一.配置某个程序默认打开哪些类型的文件(以firefox为例) 依次打开”控制面板\程序\默认程序“,点击”设置默认程序“ 在右侧列表找到firefox,选中 以firefox为例,”将此程序设置为默 ...

  5. HTTP、TCP、UDP的区别

    TCP.UDP的区别 1.TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接 2.TCP提供可靠的服务.也就是说,通过TCP连接传送的数据,无差错,不丢失,不重 ...

  6. es6新增的math函数有哪些

    Math.trunc():用于去除一个数的小数部分,返回整数部分. Math.sign():用来判断一个数到底是正数.负数.还是零. Math.cbrt():用于计算一个数的立方根. Math.hyp ...

  7. 枚举,Math和Random

    1.实用类: 01.枚举 enum Student stu=new Student(); 我们为了保证用户一个健康的输入! 我们使用了封装特性! 用户就不能直接访问我们的属性了!! private c ...

  8. 【转载三】Grafana系列教程–Grafana的配置及运行

    本篇文章,就让我们来了解下,Grafana的简单配置及运行. 详细的配置我们后面会讲,本篇文章只对其配置做一个简单了解,主要是让大家了解Grafana的配置及启动的过程及方法. 更多Grafana问题 ...

  9. SpringMVC 接受页面传递参数

    一共是五种传参方式: 一:直接将请求参数名作为Controller中方法的形参 public  String login (String username,String password)   : 解 ...

  10. fftshift函数详解

    reference: https://ww2.mathworks.cn/help/matlab/ref/fftshift.html 一.实信号情况 因为实信号以fs为采样速率的信号在 fs/2处混叠, ...