POJ - 2823 Sliding Window (滑动窗口入门)
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
| Window position | Minimum value | Maximum value |
|---|---|---|
| [1 3 -1] -3 5 3 6 7 | -1 | 3 |
| 1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
| 1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
| 1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
| 1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
| 1 3 -1 -3 5 [3 6 7] | 3 | 7 |
Your task is to determine the maximum and minimum values in the sliding window at each position.
Input
Output
Sample Input
8 3
1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 3
3 3 5 5 6 7 题意:给出n个数和区间长度m,然后求每个长度为m的区间的最大值和最小值
思路:因为题目所给的范围比较大,nlogn算法其实也可以,因为只有一组数据,但是我们把他作为滑动窗口的入门题来进行解析,滑动窗口是一个求一个区间的的值,区间长度固定的一个o(n)算法
下面首先我们熟悉下双端队列
头文件 #include<deque>
定义 deque<int> q;
头部插入 q.push_front()
头部删除 q.pop_front()
尾部插入 q.push_back()
尾部删除 q.pop_back()
取头值 q.front()
取尾值 q.back() 滑动窗口是一个维护一个队列,里面存的是最大值下表
最前的那个是当前区间最大值
给出一个例子
5 6 4 9 1
我们区间长度为2
开始5进入队列,然后因为6比5大,5就被踢出队列,6进来,因为队列最前面的就是区间里的最大值
然后4也到6得后面,因为如果6出去了,4就是当前得最大值了
后面9比4和6都大,就可以替换掉前面得数 主要思想:按顺序保存一个单调递减得序列,比他大得直接更新,小的后面区间用的到得一种思想,然后判断下标是否出区间就可以,每个数都最多进队列一次,出队列一次
然后这个提我们用两个双端队列 一个维护最大值,一个最小值即可
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<deque>
#include<vector>
#include<algorithm>
using namespace std;
int n,m;
int a[];
int b[];
int c[];
deque<int> qx,qn;
int cnt;
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
while(!qx.empty()) qx.pop_front();
while(!qn.empty()) qn.pop_front();
for(int i=;i<n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++)
{
while(!qx.empty()&&a[i]>=a[qx.back()])//判断是否新加得数比前面得大,大的话我们就要把最大值放最前,
qx.pop_back();
qx.push_back(i);
while(!qn.empty()&&a[i]<=a[qn.back()])
qn.pop_back();
qn.push_back(i);
if(i>=m-)
{
while(!qx.empty()&&qx.front()<=i-m) qx.pop_front();//我们把出了区间的数踢出队列
b[cnt]=a[qx.front()];
while(!qn.empty()&&qn.front()<=i-m) qn.pop_front();
c[cnt++]=a[qn.front()];
}
}
for(int i=;i<cnt;i++)
{
if(i==)
printf("%d",c[i]);
else printf(" %d",c[i]);
}
printf("\n");
for(int i=;i<cnt;i++)
{
if(i==)
printf("%d",b[i]);
else printf(" %d",b[i]);
}
printf("\n");
} }
POJ - 2823 Sliding Window (滑动窗口入门)的更多相关文章
- poj 2823 Sliding Window (单调队列入门)
/***************************************************************** 题目: Sliding Window(poj 2823) 链接: ...
- 洛谷P1886 滑动窗口(POJ.2823 Sliding Window)(区间最值)
To 洛谷.1886 滑动窗口 To POJ.2823 Sliding Window 题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每 ...
- POJ 2823 Sliding Window + 单调队列
一.概念介绍 1. 双端队列 双端队列是一种线性表,是一种特殊的队列,遵守先进先出的原则.双端队列支持以下4种操作: (1) 从队首删除 (2) 从队尾删除 (3) 从队尾插入 (4) ...
- POJ 2823 Sliding Window 题解
POJ 2823 Sliding Window 题解 Description An array of size n ≤ 106 is given to you. There is a sliding ...
- POJ 2823 Sliding Window & Luogu P1886 滑动窗口
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 66613 Accepted: 18914 ...
- POJ 2823 Sliding Window (滑动窗口的最值问题 )
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 41264 Accepted: 12229 ...
- 【POJ 2823】【Luogu P1886】Sliding Window 滑动窗口
POJ 2823 Luogu P1886 [解题思路] 这是一个单调队列算法的经典题目,几乎学习单调队列的人都接触过这题. 利用单调队列算法求出每一个固定区间内的最(大/小)值. 以下以最大值为例: ...
- POJ 2823 Sliding Window(单调队列入门题)
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 67218 Accepted: 190 ...
- 题解报告:poj 2823 Sliding Window(单调队列)
Description An array of size n ≤ 106 is given to you. There is a sliding window of size k which is m ...
随机推荐
- 20170814xlVBA限定日期按客户分类汇总
原始数据表: 汇总格式: Sub subtotalDic() Dim Wb As Workbook Dim Sht As Worksheet Dim oSht As Worksheet Dim mYe ...
- scrapy 爬虫框架(一)
一 . scrapy 的安装 安装scrapy框架时,需要先安装依赖包. #Linux: pip3 install scrapy #Windows: a. pip3 install wheel b. ...
- 十分钟搞定pandas内容
目录 十分钟搞定pandas 一.创建对象 二.查看数据 三.选择器 十二.导入和保存数据 参考:http://pandas.pydata.org/pandas-docs/stable/whatsne ...
- 『TensorFlow』SSD源码学习_其三:锚框生成
Fork版本项目地址:SSD 上一节中我们定义了vgg_300的网络结构,实际使用中还需要匹配SSD另一关键组件:被选取特征层的搜索网格.在项目中,vgg_300网络和网格生成都被统一进一个class ...
- (待解决,效率低下)47. Permutations II C++回溯法
思路是在相似题Permutations的基础上,将结果放到set中,利用set容器不会出现重复元素的特性,得到所需结果 但是利用代码中的/* */部分通过迭代器遍历set将set中的元素放在一个新的v ...
- python中RabbitMQ的使用(远程过程调用RPC)
在RabbitMQ消息队列中,往往接收者.发送者不止是一个身份.例如接接收者收到消息并且需要返回给发送者. 此时接收者.发送者的身份不再固定! 我们来模拟该情形: 假设有客户端client,服务端se ...
- NOIP2003加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree ...
- Django之信号和序列化
前言 Django的信号要从一张抽象图和一个需求说起: 赛道:Django 赛车:http请求 基础设施:Django设置的信号 一.Django内置信号类型 1.既然赛道上有各种基础设置,那么Dja ...
- 【转】你必须知道的EF知识和经验
注意:以下内容如果没有特别申明,默认使用的EF6.0版本,code first模式. 推荐MiniProfiler插件 工欲善其事,必先利其器. 我们使用EF和在很大程度提高了开发速度,不过随之带来的 ...
- volatile原理解析
Java并发编程:volatile关键字解析 volatile 有序性.可见性 volatile可以保证一定程度上有序性,即volatile前面的代码先于后面的代码先执行. 但是前.后代码,各自里面的 ...