Nim
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 1403   Accepted: 791

Description

Let's play a traditional game Nim. You and I are seated across a table and we have a hundred stones on the table (we know the number of stones exactly). We play in turn and at each turn, you or I can remove on to four stones from the heap. You play first and
the one who removed the last stone loses. 

In this game, you have a winning strategy. To see this, you first remove four stones and leave 96 stones. No matter how I play, I will end up with leaving 92 - 95 stones. Then you will in turn leave 91 stones for me (verify this is always possible). This way,
you can always leave 5k+1 stones for me and finally I get the last stone, sigh. If we initially had 101 stones, on the other hand, I have a winning strategy and you are doomed to lose. 



Let's generalize the game a little bit. First, let's make it a team game. Each team has n players and the 2n players are seated around the table, with each player having opponents at both sides. Turn around the table so the two teams play alternately. Second,
let's vary the maximum number of stones each player can take. That is, each player has his/her own maximum number of stones he/she can take at each turn (The minimum is always one). So the game is asymmetric and may even be unfair. 



In general, when played between two teams of experts, the outcome of a game is completely determined by the initial number of stones and the maximum number of stones each player can take at each turn. In other words, either team has a winning strategy. 



You are the head-coach of a team. In each game, the umpire shows both teams the initial number of stones and the maximum number of stones each player can take at each turn. Your team plays first. Your job is, given those numbers, to instantaneously judge whether
your team has a winning strategy. 



Incidentally, there is a rumor that Captain Future and her officers of Hakodate-maru love this game, and they are killing their time playing it during their missions. You wonder where the stones are?

Well, they do not have stones but do have plenty of balls
in the fuel containers! 

Input

The input is a sequence of lines, followed by the last line containing a zero. Each line except the last is a sequence of integers and has the following format. 



n S M1 M2 . . . M2n 



where n is the number of players in a team, S the initial number of stones, and Mi the maximum number of stones ith player can take. 1st, 3rd, 5th, ... players are your team's players and 2nd, 4th, 6th, ... the opponents. Numbers are separated by a single space
character. You may assume 1 <= n <= 10, 1 <= Mi <= 16, and 1 <= S < 2^13. 

Output

The output should consist of lines each containing either a one, meaning your team has a winning strategy, or a zero otherwise. 

Sample Input

1 101 4 4
1 100 4 4
3 97 8 7 6 5 4 3
0

Sample Output

0
1
1

Source

题目:有两个队从石堆中去石子,每一个队有n个人,每一个人每次取石子的数量有限制,然后

取最后一块的人所在的队伍输。

如今问第一队(成员为1,3,5,7...)是否可以赢得比赛。

思路 :dp[i][j]表示第i个人取,石堆剩余 j 块石头。当j为0的时候,没有石头,这时候是胜,为1。

后继中有必败态的为必胜态。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int M=1<<14;
const int maxn=50; int dp[maxn][M],a[maxn],tol,n; void initial()
{
memset(dp,-1,sizeof(dp));
} void input()
{
scanf("%d",&tol);
for(int i=0;i<2*n;i++) scanf("%d",&a[i]);
} int DP(int x,int num)
{
if(dp[x][num]!=-1) return dp[x][num];
if(num==0) return dp[x][num]=1;
dp[x][num]=0;
for(int i=1;i<=a[x] && i<=num;i++)
if(!DP((x+1)%(2*n),num-i))
dp[x][num]=1;
return dp[x][num];
} int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n==0) break;
initial();
input();
printf("%d\n",DP(0,tol));
}
return 0;
}

poj 2068 Nim(博弈dp)的更多相关文章

  1. POJ 2068 Nim#双人dp博弈

    http://poj.org/problem?id=2068 #include<iostream> #include<cstdio> #include<cstring&g ...

  2. poj 2068 Nim

    Nim POJ - 2068 题目大意:多组数据,两人轮流操作,n轮一循环,给出总石子数和这n轮每次两人能取的石子上限(下限为1).取到最后一颗者输. /* f[i][j]表示在第i轮中一共有j个石子 ...

  3. 2018山东省赛 G Game ( Nim博弈 && DP )

    题目链接 题意 : 给出 N 堆石子,每次可以选择一堆石子拿走任意颗石子,最后没有石子拿的人为败者.现在后手 Bob 可以在游戏开始前拿掉不超过 d 堆的整堆石子,现在问你有几种取走的组合使得 Bob ...

  4. POJ 2234 Nim博弈

    思路: nim博弈裸题 xor一下 //By SiriusRen #include <cstdio> using namespace std; int n,tmp,xx; int main ...

  5. POJ 2068 NIm (dp博弈,每个人都有特定的取最大值)

    题目大意: 有2n个人,从0开始编号,按编号奇偶分为两队,循环轮流取一堆有m个石子的石堆,偶数队先手,每个人至少取1个,至多取w[i]个,取走最后一个石子的队伍输.问偶数队是否能赢. 分析: 题目数据 ...

  6. POJ 2068 Nim(博弈论)

    [题目链接] http://poj.org/problem?id=2068 [题目大意] 给出两队人,交叉放置围成一圈,每个人能取的石子数有个上限,各不相同 轮流取石头,取到最后一块石头的队伍算输,问 ...

  7. poj 2068 Nim(博弈树)

    Nim Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1501   Accepted: 845 Description Le ...

  8. poj 2068 Nim 博弈论

    思路:dp[i][j]:第i个人时还剩j个石头. 当j为0时,有必胜为1: 后继中有必败态的为必胜态!!记忆化搜索下就可以了! 代码如下: #include<iostream> #incl ...

  9. 博弈dp入门 POJ - 1678 HDU - 4597

    本来博弈还没怎么搞懂,又和dp搞上了,哇,这真是冰火两重天,爽哉妙哉. 我自己的理解就是,博弈dp有点像对抗搜索的意思,但并不是对抗搜索,因为它是像博弈一样,大多数以当前的操作者来dp,光想是想不通的 ...

随机推荐

  1. 用SQL统计每分钟的访问量

    以前面试没有理解到它什么意思的一道题,回忆中是这个题意 ), to_char(r.datelastmaint, 'yyyy-mm-dd hh24:mi'), sum(abs(r.tranamt)) f ...

  2. 【Java】 剑指offer(65) 不用加减乘除做加法

      本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,求两个整数之和,要求在函数体内不得使用+.-.×. ...

  3. PEP 8 - Python代码样式指南

    PEP 8 - Python代码样式指南 PEP: 8 标题: Python代码风格指南 作者: Guido van Rossum <python.org上的guido>,Barry Wa ...

  4. 在 Windows 10 中使用 OpenAI Spinning Up

    前段时间,openAI 发布了 Spinning Up ,本篇博客将介绍如何在 Windows 系统中使用 Spinning Up. 什么是 Spinning Up 先来说说 Spinning Up, ...

  5. 不一样的go语言-gopher

    前言   gopher原意地鼠,在golang 的世界里解释为地道的go程序员.在其他语言的世界里也有PHPer,Pythonic的说法,反而Java是个例外.虽然也有Javaer之类的说法,但似乎并 ...

  6. IntelliJ IDEA关于logger的live template配置

    1.安装 log support2插件 2.配置log support2 由于项目中的日志框架是公司自己封装的,所以还需要自己手动改一下 log support2插件生成的live template ...

  7. Jackson ObjectMapper readValue过程

    1.整体调用栈 2.看一下调用栈的两个方法 resolve 方法中通过 Iterator i$ = this._beanProperties.iterator() 遍历属性的所有子属性,缓存对应的 d ...

  8. Linux上的压缩与归档

    非常非常非常简要的描述而已. 压缩 压缩的简要原理是通过一些算法,拿CPU的计算时间去换磁盘上存储的空间.同时还可节省网络传输中的带宽. 对于文本文件的压缩效果比较好,对二进制程序.图片等文件的压缩效 ...

  9. babel和postcss引起的一点儿思考

    写es6,一般都会用到babel,它能把es6转为更好的es5,而es5可以直接在浏览器上运行.postcss是css界的babel,它可以把css转为更好的css,比如autoprefixer,让不 ...

  10. adb monkey测试 命令

    adb shell monkey -p cn.com.linktrust.als.ipad 3500 LOWED_PACKAGE [-p ALLOWED_PACKAGE] ...] [-c MAIN_ ...