poj 2068 Nim(博弈dp)
Nim
Description
Let's play a traditional game Nim. You and I are seated across a table and we have a hundred stones on the table (we know the number of stones exactly). We play in turn and at each turn, you or I can remove on to four stones from the heap. You play first and
the one who removed the last stone loses. In this game, you have a winning strategy. To see this, you first remove four stones and leave 96 stones. No matter how I play, I will end up with leaving 92 - 95 stones. Then you will in turn leave 91 stones for me (verify this is always possible). This way, you can always leave 5k+1 stones for me and finally I get the last stone, sigh. If we initially had 101 stones, on the other hand, I have a winning strategy and you are doomed to lose. Let's generalize the game a little bit. First, let's make it a team game. Each team has n players and the 2n players are seated around the table, with each player having opponents at both sides. Turn around the table so the two teams play alternately. Second, let's vary the maximum number of stones each player can take. That is, each player has his/her own maximum number of stones he/she can take at each turn (The minimum is always one). So the game is asymmetric and may even be unfair. In general, when played between two teams of experts, the outcome of a game is completely determined by the initial number of stones and the maximum number of stones each player can take at each turn. In other words, either team has a winning strategy. You are the head-coach of a team. In each game, the umpire shows both teams the initial number of stones and the maximum number of stones each player can take at each turn. Your team plays first. Your job is, given those numbers, to instantaneously judge whether your team has a winning strategy. Incidentally, there is a rumor that Captain Future and her officers of Hakodate-maru love this game, and they are killing their time playing it during their missions. You wonder where the stones are? Well, they do not have stones but do have plenty of balls Input
The input is a sequence of lines, followed by the last line containing a zero. Each line except the last is a sequence of integers and has the following format.
n S M1 M2 . . . M2n where n is the number of players in a team, S the initial number of stones, and Mi the maximum number of stones ith player can take. 1st, 3rd, 5th, ... players are your team's players and 2nd, 4th, 6th, ... the opponents. Numbers are separated by a single space character. You may assume 1 <= n <= 10, 1 <= Mi <= 16, and 1 <= S < 2^13. Output
The output should consist of lines each containing either a one, meaning your team has a winning strategy, or a zero otherwise.
Sample Input 1 101 4 4 Sample Output 0 Source |
题目:有两个队从石堆中去石子,每一个队有n个人,每一个人每次取石子的数量有限制,然后
取最后一块的人所在的队伍输。
如今问第一队(成员为1,3,5,7...)是否可以赢得比赛。
思路 :dp[i][j]表示第i个人取,石堆剩余 j 块石头。当j为0的时候,没有石头,这时候是胜,为1。
后继中有必败态的为必胜态。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int M=1<<14;
const int maxn=50; int dp[maxn][M],a[maxn],tol,n; void initial()
{
memset(dp,-1,sizeof(dp));
} void input()
{
scanf("%d",&tol);
for(int i=0;i<2*n;i++) scanf("%d",&a[i]);
} int DP(int x,int num)
{
if(dp[x][num]!=-1) return dp[x][num];
if(num==0) return dp[x][num]=1;
dp[x][num]=0;
for(int i=1;i<=a[x] && i<=num;i++)
if(!DP((x+1)%(2*n),num-i))
dp[x][num]=1;
return dp[x][num];
} int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n==0) break;
initial();
input();
printf("%d\n",DP(0,tol));
}
return 0;
}
poj 2068 Nim(博弈dp)的更多相关文章
- POJ 2068 Nim#双人dp博弈
http://poj.org/problem?id=2068 #include<iostream> #include<cstdio> #include<cstring&g ...
- poj 2068 Nim
Nim POJ - 2068 题目大意:多组数据,两人轮流操作,n轮一循环,给出总石子数和这n轮每次两人能取的石子上限(下限为1).取到最后一颗者输. /* f[i][j]表示在第i轮中一共有j个石子 ...
- 2018山东省赛 G Game ( Nim博弈 && DP )
题目链接 题意 : 给出 N 堆石子,每次可以选择一堆石子拿走任意颗石子,最后没有石子拿的人为败者.现在后手 Bob 可以在游戏开始前拿掉不超过 d 堆的整堆石子,现在问你有几种取走的组合使得 Bob ...
- POJ 2234 Nim博弈
思路: nim博弈裸题 xor一下 //By SiriusRen #include <cstdio> using namespace std; int n,tmp,xx; int main ...
- POJ 2068 NIm (dp博弈,每个人都有特定的取最大值)
题目大意: 有2n个人,从0开始编号,按编号奇偶分为两队,循环轮流取一堆有m个石子的石堆,偶数队先手,每个人至少取1个,至多取w[i]个,取走最后一个石子的队伍输.问偶数队是否能赢. 分析: 题目数据 ...
- POJ 2068 Nim(博弈论)
[题目链接] http://poj.org/problem?id=2068 [题目大意] 给出两队人,交叉放置围成一圈,每个人能取的石子数有个上限,各不相同 轮流取石头,取到最后一块石头的队伍算输,问 ...
- poj 2068 Nim(博弈树)
Nim Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1501 Accepted: 845 Description Le ...
- poj 2068 Nim 博弈论
思路:dp[i][j]:第i个人时还剩j个石头. 当j为0时,有必胜为1: 后继中有必败态的为必胜态!!记忆化搜索下就可以了! 代码如下: #include<iostream> #incl ...
- 博弈dp入门 POJ - 1678 HDU - 4597
本来博弈还没怎么搞懂,又和dp搞上了,哇,这真是冰火两重天,爽哉妙哉. 我自己的理解就是,博弈dp有点像对抗搜索的意思,但并不是对抗搜索,因为它是像博弈一样,大多数以当前的操作者来dp,光想是想不通的 ...
随机推荐
- ELK - MAC环境搭建
ELK - MAC环境搭建 本文旨在记录elasticsearch.logstash.kibana在mac下的安装与启动. 写在前面 ELK的官方文档对与它们的使用方法已经讲的非常清楚了,这里只对相关 ...
- Flink(二)CentOS7.5搭建Flink1.6.1分布式集群
一. Flink的下载 安装包下载地址:http://flink.apache.org/downloads.html ,选择对应Hadoop的Flink版本下载 [admin@node21 soft ...
- 【Java】 剑指offer(53-2) 0到n-1中缺失的数字
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 一个长度为n-1的递增排序数组中的所有数字都是唯一的,并且每个 ...
- Ubuntu 下常用命令
整理一下比较常用的操作命令: 附上一个Linux 命令大全: http://man.linuxde.net/ 打开终端:Ctrl+Alt+T ls: ls : 查看当前路径下的文件夹以及文件 ls + ...
- Java各种对象(PO,BO,VO,DTO,POJO,DAO,Entity,JavaBean,JavaBeans)的区分
PO:持久对象 (persistent object),po(persistent object)就是在Object/Relation Mapping框架中的Entity,po的每个属性基本上都对应数 ...
- PopupWindow分享页面
效果图 步骤: 1.布局中添加分享按钮 2.画出分享页面 3.设置分享页面animator进出动画,并在style.xml中配置 4.MainActivity中添加方法 *画出布局 主页面: < ...
- 【RAY TRACING THE REST OF YOUR LIFE 超详解】 光线追踪 3-5 random direction & ONB
Preface 往后看了几章,对这本书有了新的理解 上一篇,我们第一次尝试把MC积分运用到了Lambertian材质中,当然,第一次尝试是失败的,作者发现它的渲染效果和现实有些出入,所以结尾处声明要 ...
- Java设计模式从精通到入门二 装饰器模式
介绍 我尽量用最少的语言解释总结: Java23种设计模式之一,属于结构型模式,允许向一个现有的对象添加新的功能,不改变其结构. 应用实例: 给英雄联盟种的射手,添加不同的装备.先装备攻速 ...
- 暴力破解ZIP文件密码
Python 的标准库提供了 ZIP 文件的提取压缩模块 zipfile,现在让我们试着用这个模块,暴力破解出加密的 ZIP 文件!我们可以用 extractall()这个函数抽取文件,密码正确则返回 ...
- 漫谈可视化Prefuse(五)
伴随着前期的基础积累,翻过API,读过一些Demo,总觉得自己已经摸透了Prefuse,小打小闹似乎已经无法满足内心膨胀的自己.还记得儿时看的<武状元苏乞儿>中降龙十八掌最后一张居然是空白 ...