前面分析了AHB总线协议。接下来分析APB总线协议。

  (一) APB总线接口:

  PCLK APB总线时钟。

  PRESETn APB总线复位。低有效。

  PADDR 地址总线。

  PSELx 从设备选择。

  PENABLE APB传输选通。

  PWRITE 高为写传输,低为读。

  PRDATA 读数据总线。

  PWDATA 写数据总线。

  接口信号定义如下:

 interface   apb_slv_intf #(
parameter AW = ,
DW =
) (
input logic PCLK,
input logic PRESETn
);
logic PSEL;
logic PENABLE;
logic [AW-:] PADDR;
logic PWRITE;
logic [DW-:] PWDATA; logic [DW-:] PRDATA; modport m (
input PRDATA,
output PSEL, PENABLE, PADDR, PWRITE, PWDATA
); modport s (
input PSEL, PENABLE, PADDR, PWRITE, PWDATA,
output PRDATA
); endinterface: apb_slv_intf

  (二) APB总线时序图:

写传输

读传输

  注意在PENABLE信号有效后从设备需要给出有效数据/读取有效数据。

  (三) AHB总线到APB总线转换桥

 module ahb2apb_bridge #(
parameter AHB_AW = ,
AHB_DW = ,
APB_AW = ,
APB_DW = ,
NSLV =
) (
input logic HCLK,
input logic HRESETn,
input logic PCLK,
input logic PRESETn,
ahb_slv_intf.s ahb,
apb_slv_intf.m apbv[NSLV]
); logic ahb_work;
logic apb_work; genvar i; typedef enum logic [:] {
AHB_IDLE = 'b00,
AHB_WRITE = 'b01,
AHB_READ = 'b10,
AHB_WAIT = 'b11
} ahb_state_e; // Signal of AHB Domain
struct {
logic work;
logic [AHB_AW-:] addr;
logic [AHB_DW-:] data;
logic write;
ahb_state_e cstate, nstate;
} ahbd; typedef enum logic [:] {
APB_IDLE = 'b00,
APB_WRITE = 'b01,
APB_READ = 'b10
} apb_state_e; // Signal of APB Domain
struct {
logic work;
logic [APB_DW-:] data[NSLV];
logic PSEL[NSLV];
logic PENABLE[NSLV];
apb_state_e cstate, nstate;
} apbd; // AHB Control Logic
always_comb begin
case (ahbd.cstate)
AHB_IDLE: begin
if (ahb.HSEL && ahb.HTRANS == HTRANS_NONSEQ) begin
if (ahb.HWRITE)
ahbd.nstate = AHB_WRITE;
else
ahbd.nstate = AHB_READ;
end
else
ahbd.nstate = AHB_IDLE;
end
AHB_WRITE: begin
if (apbd.work)
ahbd.nstate = AHB_WAIT;
else
ahbd.nstate = AHB_WRITE;
end
AHB_READ: begin
if (apbd.work)
ahbd.nstate = AHB_WAIT;
else
ahbd.nstate = AHB_READ;
end
AHB_WAIT: begin
if (!apbd.work)
ahbd.nstate = AHB_IDLE;
else
ahbd.nstate = AHB_WAIT;
end
default: ahbd.nstate = AHB_IDLE;
endcase
end always_ff @(posedge HCLK or negedge HRESETn) begin
if (!HRESETn)
ahbd.cstate <= AHB_IDLE;
else
ahbd.cstate <= ahbd.nstate;
end always_ff @(posedge HCLK or negedge HRESETn) begin
if (!HRESETn) begin
ahbd.work <= 'b0;
ahbd.addr <= '0;
ahbd.data <= '0;
ahbd.write <= 'b0;
ahb.HREADY <= 'b1;
ahb.HRDATA[APB_DW-:] <= '0;
end
else begin
case (ahbd.cstate)
AHB_IDLE: begin
if (ahb.HSEL && ahb.HTRANS == HTRANS_NONSEQ) begin
ahbd.addr <= ahb.HADDR;
ahbd.write <= ahb.HWRITE;
ahb.HREADY <= 'b0;
end
else begin
ahbd.addr <= '0;
ahbd.write <= 'b0;
ahb.HREADY <= 'b1;
end
ahbd.work <= 'b0;
ahbd.data <= '0;
ahb.HRDATA[APB_DW-:] <= apbd.data[ahbd.addr[AHB_AW-:AHB_AW-]];
end
AHB_WRITE: begin
ahb.HREADY <= 'b0;
ahbd.work <= 'b1;
ahbd.data <= ahb.HWDATA;
ahb.HRDATA[APB_DW-:] <= '0;
end
AHB_READ: begin
ahbd.work <= 'b1;
ahbd.data <= '0;
ahb.HREADY <= 'b0;
ahb.HRDATA[APB_DW-:] <= '0;
end
AHB_WAIT: begin
ahbd.work <= 'b0;
ahb.HREADY <= 'b0;
ahb.HRDATA[APB_DW-:] <= '0;
end
endcase
end
end assign ahb.HRESP = HRESP_OKAY;
// assign ahb.HRDATA[AHB_DW-1:APB_DW] = '0; // APB Control Logic
always_comb begin
case (apbd.cstate)
APB_IDLE: begin
if (ahbd.work) begin
if (ahbd.write)
apbd.nstate = APB_WRITE;
else
apbd.nstate = APB_READ;
end
else
apbd.nstate = APB_IDLE;
end
APB_WRITE: apbd.nstate = APB_IDLE;
APB_READ: apbd.nstate = APB_IDLE;
default: apbd.nstate = APB_IDLE;
endcase
end always_ff @(posedge PCLK or negedge PRESETn) begin
if (!PRESETn)
apbd.cstate <= APB_IDLE;
else
apbd.cstate <= apbd.nstate;
end always_ff @(posedge PCLK or negedge PRESETn) begin
if (!PRESETn) begin
apbd.work <= 'b0;
for (int j = ; j < NSLV; j++) begin
apbd.PSEL[j] <= 'b0;
apbd.PENABLE[j] <= 'b0;
end
end
else begin
case (apbd.cstate)
APB_IDLE: begin
if (ahbd.work) begin
apbd.work <= 'b1;
for (int j = ; j < NSLV; j++)
apbd.PSEL[j] <= (ahbd.addr[AHB_AW-:AHB_AW-] == j) ? 'b1 : 1'b0;
end
else begin
apbd.work <= 'b0;
for (int j = ; j < NSLV; j++)
apbd.PSEL[j] <= 'b0;
end
for (int j = ; j < NSLV; j++)
apbd.PENABLE[j] <= 'b0;
end
APB_WRITE: begin
apbd.work <= 'b1;
for (int j = ; j < NSLV; j++)
apbd.PENABLE[j] <= (ahbd.addr[AHB_AW-:AHB_AW-] == j) ? 'b1 : 1'b0;
end
APB_READ: begin
apbd.work <= 'b1;
for (int j = ; j < NSLV; j++)
apbd.PENABLE[j] <= (ahbd.addr[AHB_AW-:AHB_AW-] == j) ? 'b1 : 1'b0;
end
endcase
end
end generate
for (i = ; i < NSLV; i++) begin: apbv_loop
assign apbv[i].PADDR = {'h0, ahbd.addr[APB_AW-4-1:0]};
assign apbv[i].PWRITE = ahbd.write;
assign apbv[i].PWDATA = ahbd.data[APB_DW-:];
assign apbd.data[i] = apbv[i].PRDATA;
assign apbv[i].PSEL = apbd.PSEL[i];
assign apbv[i].PENABLE = apbd.PENABLE[i];
end
endgenerate endmodule: ahb2apb_bridge

AMBA APB总线的更多相关文章

  1. AHB总线和APB总线

    AHB主要用于高性能模块(如CPU.DMA和DSP等)之间的连接,作为SoC的片上系统总线,它包括以下一些特性:单个时钟边沿操作:非三态的实现方式:支持突发传输:支持分段传输:支持多个主控制器:可配置 ...

  2. APB总线

    APB(Advance Peripheral Bus)是AMBA总线的一部分,从1998年第一版至今共有3个版本. AMBA 2 APB Specfication:定义最基本的信号interface, ...

  3. AMBA AHB总线

    Advanced Microcontroller Bus Architecture, 即AMBA,是ARM公司提出的总线规范,被很多SoC设计所采用,常用的实现有AHB(Advanced High-P ...

  4. STM32WB AHB总线、APB总线与外设

    方框图: 如图所示: 1)APB1外设 2)APB2外设 3)AHB1外设 4)AHB2外设 5)AHB3外设 6)AHB4外设(ABH共享总线外设) 内存映射关系图:

  5. AMBA总线介绍

    The Advanced Microcontroller Bus Architecture (AMBA) specification defines an on- chip communication ...

  6. APB协议

    https://wenku.baidu.com/view/2663f629ef06eff9aef8941ea76e58fafab04592.html https://www.cnblogs.com/l ...

  7. AMBA总线协议AHB、APB

    一.什么是AMBA总线 AMBA总线规范是ARM公司提出的总线规范,被大多数SoC设计采用,它规定了AHB (Advanced High-performance Bus).ASB (Advanced ...

  8. AMBA总线协议AHB、APB、AXI对比分析【转】

    转自:https://blog.csdn.net/ivy_reny/article/details/56274412 一.AMBA概述    AMBA (Advanced Microcontrolle ...

  9. [转]AMBA、AHB、APB、ASB总线简介

    [转]http://www.cnblogs.com/zhaozhong1989/articles/3092140.html 1.前言 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大.数字IC ...

随机推荐

  1. CSS三:CSS的三种引入方式

    CSS的引入方式共有三种:行内样式.内部样式表.外部样式表. 一.行内样式 使用style属性引入CSS样式. 示例:<h1 style="color:red;">st ...

  2. Jmeter安装和启动和使用

    一.安装配置JDK 1.下载安装jdk,地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.配置JDK环境变 ...

  3. java多线程快速入门(十四)

    使用atomicInteger解决了原子性问题(AtomicInteger保证每次只能一个线程操作count) package com.cppdy; import java.util.concurre ...

  4. hdu1828 扫描线计算周长

    和扫描线计算面积差不多,新加了lbd,rbd线段树来标记区间的左右两侧是否被填充(左右边界是否存在),numbd线段树统计区间有多少边 /*数据弱不用离散化,但是要处理一下坐标*/ #include& ...

  5. appium自动化测试之元素定位

    方法一 使用SDK中附带的uiautomatorviewer来定位 在SDK安装目录下的tools下有个uiautomatorviewer.bat批处理文件点击运行 运行后(注意appium desk ...

  6. html的header结构和实例

    HTML header结构 <html> <head> <!-- base标签为页面上的所有链接规定默认地址或默认目标. 通常情况下,浏览器会从当前文档的 URL 中提取 ...

  7. 040 关于hive元数据的解析

    一:原理 1.整体原理 找到数据库 找到表 先找分区表,然后不找SDS表了,先去找PARTITIONS表,根据这张表的SD_ID找对应的HDFS路劲 再普通表,直接根据SDS表的中SD_ID找到对应的 ...

  8. Java中的Lambda表达式

    Lambda来源于希腊字母入,发音为  /'læmdə/对高数有所了解的人都知道λ用于声明一个数学逻辑系统,表示根据XX的输入参数,会返回某个Y结果.这正是编程语言中函数(方法)的意思.因此Lambd ...

  9. 一步一步写数据结构(二叉树的建立和遍历,c++)

    简述: 二叉树是十分重要的数据结构,主要用来存放数据,并且方便查找等操作,在很多地方有广泛的应用. 二叉树有很多种类,比如线索二叉树,二叉排序树,平衡二叉树等,本文写的是最基础最简单的二叉树. 思路: ...

  10. Linux学习之常用压缩命令(三)

    (一)常用压缩命令 (1)gzip命令 (2)gunzip命令 (3)tar命令 (4)zip命令 (5)unzip命令 (6)bzip2命令 (7)bunzip2命令 (一)常用压缩命令 (1)gz ...