最小二乘法原理十分简单,这里不再赘述。对于预测公式y' = a * x + b,最优解如下

double a = Sxy / Sxx;

double b = yAvg - a * xAvg;

double r = Sxy / Math.sqrt(Sxx * Syy);

其中,r为相关系数,绝对值越大,线性相关性越大。对f(a, b) = (y - y')^2求极值,即可得到上述解。

package coshaho.learn;

import java.util.HashMap;
import java.util.Map;
import java.util.Random; /**
* 最小二乘法
* @author coshaho
*
*/
public class MyLineRegression
{
/**
* 最小二乘法
* @param X
* @param Y
* @return y = ax + b, r
*/
public Map<String, Double> lineRegression(double[] X, double[] Y)
{
if(null == X || null == Y || 0 == X.length
|| 0 == Y.length || X.length != Y.length)
{
throw new RuntimeException();
} // x平方差和
double Sxx = varianceSum(X);
// y平方差和
double Syy = varianceSum(Y);
// xy协方差和
double Sxy = covarianceSum(X, Y); double xAvg = arraySum(X) / X.length;
double yAvg = arraySum(Y) / Y.length; double a = Sxy / Sxx;
double b = yAvg - a * xAvg; // 相关系数
double r = Sxy / Math.sqrt(Sxx * Syy);
Map<String, Double> result = new HashMap<String, Double>();
result.put("a", a);
result.put("b", b);
result.put("r", r); return result;
} /**
* 计算方差和
* @param X
* @return
*/
private double varianceSum(double[] X)
{
double xAvg = arraySum(X) / X.length;
return arraySqSum(arrayMinus(X, xAvg));
} /**
* 计算协方差和
* @param X
* @param Y
* @return
*/
private double covarianceSum(double[] X, double[] Y)
{
double xAvg = arraySum(X) / X.length;
double yAvg = arraySum(Y) / Y.length;
return arrayMulSum(arrayMinus(X, xAvg), arrayMinus(Y, yAvg));
} /**
* 数组减常数
* @param X
* @param x
* @return
*/
private double[] arrayMinus(double[] X, double x)
{
int n = X.length;
double[] result = new double[n];
for(int i = 0; i < n; i++)
{
result[i] = X[i] - x;
} return result;
} /**
* 数组求和
* @param X
* @return
*/
private double arraySum(double[] X)
{
double s = 0 ;
for( double x : X )
{
s = s + x ;
}
return s ;
} /**
* 数组平方求和
* @param X
* @return
*/
private double arraySqSum(double[] X)
{
double s = 0 ;
for( double x : X )
{
s = s + Math.pow(x, 2) ; ;
}
return s ;
} /**
* 数组对应元素相乘求和
* @param X
* @return
*/
private double arrayMulSum(double[] X, double[] Y)
{
double s = 0 ;
for( int i = 0 ; i < X.length ; i++ )
{
s = s + X[i] * Y[i] ;
}
return s ;
} public static void main(String[] args)
{
Random random = new Random();
double[] X = new double[20];
double[] Y = new double[20]; for(int i = 0; i < 20; i++)
{
X[i] = Double.valueOf(Math.floor(random.nextDouble() * 97));
Y[i] = Double.valueOf(Math.floor(random.nextDouble() * 997));
} System.out.println(new MyLineRegression().lineRegression(X, Y));
}
}

最小二乘法的Java实现的更多相关文章

  1. 最小二乘法拟合java实现源程序(转)

    因为我所在的项目要用到最小二乘法拟合,所有我抽时间将C++实现的程序改为JAVA实现,现在贴出来,供大家参考使用./** * <p>函数功能:最小二乘法曲线拟合</p> * @ ...

  2. Spark案例分析

    一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...

  3. 最小二乘法 java

    import java.util.ArrayList; import java.util.Collection; import org.apache.commons.math3.optim.Point ...

  4. 最小二乘法多项式拟合的Java实现

    背景 由项目中需要根据一些已有数据学习出一个y=ax+b的一元二项式,给定了x,y的一些样本数据,通过梯度下降或最小二乘法做多项式拟合得到a.b,解决该问题时,首先想到的是通过spark mllib去 ...

  5. 一元线性回归分析及java实现

    http://blog.csdn.net/hwwn2009/article/details/38414911 一元线性回归分析及java实现 2014-08-07 11:02 1072人阅读 评论(0 ...

  6. 逻辑回归的相关问题及java实现

    本讲主要说下逻辑回归的相关问题和详细的实现方法 1. 什么是逻辑回归 逻辑回归是线性回归的一种,那么什么是回归,什么是线性回归 回归指的是公式已知,对公式中的未知參数进行预计,注意公式必须是已知的,否 ...

  7. Java练习 SDUT-2728_最佳拟合直线

    最佳拟合直线 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 在很多情况下,天文观测得到的数据是一组包含很大数量的序列点 ...

  8. [Java] 数据分析 -- 回归分析

    线性回归 需求:从文件读取数据对,计算回归函数及系数 实现1:commons.math的SimpleRegression,定义函数getData从文件读取数据返回SimpleRegression类 1 ...

  9. Java 使用 Apache commons-math3 线性拟合、非线性拟合实例(带效果图)

    Java 使用 CommonsMath3 的线性和非线性拟合实例,带效果图 例子查看 GitHub Gitee 运行src/main/java/org/wfw/chart/Main.java 即可查看 ...

随机推荐

  1. 给予Java初学者的学习路线建议

    va学习这一部分其实也算是今天的重点,这一部分用来回答很多群里的朋友所问过的问题,那就是你是如何学习Java的,能不能给点建议?今天我是打算来点干货,因此咱们就不说一些学习方法和技巧了,直接来谈每个阶 ...

  2. IO和NIO

    一.创建IO System.out.println( "*************欢迎进入文件操作系统*************" ); System.out.println( & ...

  3. 前端用Json传输数据给后台,用postman测试

    postman发送json格式的post请求   在地址栏里输入请求url:http://127.0.0.1:8081/getmoney 选择“POST”方式, 在“headers”添加key:Con ...

  4. WebSocket 学习教程(一):理论

    一.WebSocket简单介绍 随着互联网的发展,传统的HTTP协议已经很难满足Web应用日益复杂的需求了.近年来,随着HTML5的诞生,WebSocket协议被提出,它实现了浏览器与服务器的全双工通 ...

  5. 用laravel dingo/api创建简单的api

    1,修改.env配置文件添加 API_STANDARDS_TREE=vnd API_SUBTYPE=myapp API_PREFIX=api API_DOMAIN=null API_VERSION=v ...

  6. UIKIT_EXTERN和define定义常量

    看过我其他的博客的人都知道,我喜欢用define定义常量,最近看了一个开源的轮子,使用UIKIT_EXTERN这个定义的常量,了解了一下,发现使用宏定义的常量会在内存中临时开辟一份内存空间,而使用UI ...

  7. 数据库——MongoDB增删改查

    MongoDB增删改查操作 本文包含对数据库.集合以及文档的基本增删改查操作 数据库操作 #1.增 use config #如果数据库不存在,则创建并切换到该数据库,存在则直接切换到指定数据库. #2 ...

  8. [django]form的content-type(mime)

    form默认的content-type是 'application/x-www-form-urlencoded' 可以修改为多文档: enctype即为mime类型 <form action=& ...

  9. emq知识点

    1  配置用户名 默认是可以匿名登录(与mosquitto相同) ## Allow Anonymous authentication mqtt.allow_anonymous = true etc/p ...

  10. Java 基础 常用API (System类,Math类,Arrays, BigInteger,)

    基本类型包装类 基本类型包装类概述 在实际程序使用中,程序界面上用户输入的数据都是以字符串类型进行存储的.而程序开发中,我们需要把字符串数据,根据需求转换成指定的基本数据类型,如年龄需要转换成int类 ...