uvalive 3276 The Great Wall Game
题意:
一个n * n的棋盘上放着n个棋子,现在要求把这n个棋子用最少的步数移到同一条直线上,即同一列同一行或者同一对角线(两条)。输出最少的步数(只能往四个方向移动,即正东,正西,正南,正北)。
思路:
每个棋子唯一对应一个格子,每个棋子不能在同一个格子,那么就相当于一个二分图(强行二分图)。
因为n很小,所以可以枚举每一行,每一列,两条对角线,然后每个点移动到每一条直线的每一个格子都有一个距离,那么这个点就向格子连一条权值为距离的边,这个问题就转化成了求所有最佳完美的匹配中的最小值,用KM算法。
因为我们求的是最小步数,所以求的是带权二分图的最小匹配。
求最小匹配,就将每一条边的权值取反,然后求最大匹配,再将最后的结果取反就得到了最小匹配的结果。
复杂度为O(n^4)。
注意:输出很坑,每一个答案后都有一个换行,并不是两个中间输出一个,也就是说,最后一个后面也有换行。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std; const int N = ;
const int inf = 0x3f3f3f3f; int love[N][N];
int lx[N],ly[N];
bool visx[N],visy[N];
int match[N];
int slack[N]; struct node
{
int x,y; node(int aa,int bb)
{
x = aa;
y = bb;
}
}; vector<node> vn; int mabs(int x)
{
return x >= ? x : -x;
} bool dfs(int u,int n)
{
visx[u] = ; for (int i = ;i <= n;i++)
{
if (visy[i]) continue; int gap = lx[u] + ly[i] - love[u][i]; if (gap == )
{
visy[i] = ; if (match[i] == - || dfs(match[i],n))
{
match[i] = u;
return true;
}
}
else
{
slack[i] = min(gap,slack[i]);
}
} return false;
} int km(int n)
{
memset(match,-,sizeof(match));
memset(ly,,sizeof(ly)); for (int i = ;i <= n;i++)
{
lx[i] = love[i][]; for (int j = ;j <= n;j++)
{
lx[i] = max(lx[i],love[i][j]);
}
} for (int i = ;i <= n;i++)
{
memset(slack,inf,sizeof(slack)); while ()
{
memset(visx,,sizeof(visx));
memset(visy,,sizeof(visy)); if (dfs(i,n)) break; int d = inf; for (int j = ;j <= n;j++)
{
if (!visy[j]) d = min(d,slack[j]);
} for (int j = ;j <= n;j++)
{
if (visx[j]) lx[j] -= d; if (visy[j]) ly[j] += d;
}
} } int res = ; for (int i = ;i <= n;i++)
{
res += love[match[i]][i];
} return res;
} int main()
{
int n;
int kase = ; while (scanf("%d",&n) != EOF && n)
{
vn.clear(); for (int i = ;i < n;i++)
{
int a,b; scanf("%d%d",&a,&b); vn.push_back(node(a,b));
} //if (kase) printf("\n"); int ans = 1e8; for (int i = ;i <= n;i++)
{
for (int j = ;j < vn.size();j++)
{
for (int k = ;k <= n;k++)
{
int dx = mabs(vn[j].x - i);
int dy = mabs(vn[j].y - k);
love[j+][k] = -(dx + dy);
}
} int tmp = -km(n); //printf("%d **\n",tmp); ans = min(tmp,ans);
} for (int i = ;i <= n;i++)
{
for (int j = ;j < vn.size();j++)
{
for (int k = ;k <= n;k++)
{
int dy = mabs(vn[j].y - i);
int dx = mabs(vn[j].x - k);
love[j+][k] = -(dx + dy);
}
} int tmp = -km(n); ans = min(tmp,ans); //printf("%d **\n",tmp);
} for (int i = ;i <= n;i++)
{
for (int j = ;j < vn.size();j++)
{
int dx = mabs(vn[j].x - i);
int dy = mabs(vn[j].y - i); love[j+][i] = -(dx + dy);
}
} ans = min(ans,-km(n)); for (int i = ;i <= n;i++)
{
for (int j = ;j < vn.size();j++)
{
int dx = mabs(vn[j].x - i);
int dy = mabs(vn[j].y - (n - i + )); love[j+][i] = -(dx + dy);
}
} ans = min(ans,-km(n)); printf("Board %d: %d moves required.\n\n",++kase,ans);
} return ;
}
uvalive 3276 The Great Wall Game的更多相关文章
- UVALive 5097 Cross the Wall
贪心思想,$dp$,斜率优化. 首先将人按照$w$从大到小排序,如果$w$一样,按$h$从大到小排.这样一来,某位置之后,比该位置$h$小的都是不需要考虑的. 因此,形成了如下图所示的结果: 即第一个 ...
- [kuangbin带你飞]专题二十 斜率DP
ID Origin Title 20 / 60 Problem A HDU 3507 Print Article 13 / 19 Problem B HDU 2829 Lawr ...
- KUANGBIN带你飞
KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题 //201 ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- [kuangbin带你飞]专题1-23题目清单总结
[kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 Fli ...
- ACM--[kuangbin带你飞]--专题1-23
专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 FliptilePOJ 1426 Find T ...
- UVALive 4425 Another Brick in the Wall 暴力
C - Another Brick in the Wall Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & ...
- UVALive 2453 Wall (凸包)
题意:给你一个多边形的城堡(多个点),使用最短周长的城墙将这个城堡围起来并保证城墙的每个点到城堡上的每个点的距离都不小于l 题解:因为两点间的直线一定比折线短,所以这样做 先使用所有点求得一个凸包,接 ...
- UVALive 5066 Fire Drill BFS+背包
H - Fire Drill Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Sta ...
随机推荐
- telnet测试端口的使用
端口开启后会跳转到 :
- IDEA指定启动JDK版本
使用场景: 开发人员在自己的机器上可能装了多个版本的JDK,但是在环境变量中只能配置一个 JAVA_HOME ,so你的IDEA Eclipse 可能因为你在 JAVA_HOME 配置JDK1.8 以 ...
- 【PyQt5-Qt Designer】工具箱(QToolBox)控件的使用
工具箱(QToolBox)+toolButton+tabWidget 总体介绍 QToolBox类提供了一列选项卡的小部件(选项卡内含项目). 工具箱是一个小部件,它将选项卡一个一个的显示,当前项目显 ...
- 封装 vue 组件的过程
首先,组件可以提升整个项目的开发效率.能够把页面抽象成多个相对独立的模块,解决了我们传统项目开发的缺点:效率低,难维护,复用性等问题: 然后,使用Vue.extend方法创建一个组件,然后使用 Vue ...
- 微信小程序添加悬浮在线客服会话按钮
微信为小程序提供客服消息能力,小程序用户可以方便快捷地与小程序服务提供方进行沟通,并且已经做成了组件的形式,直接就可以调用.客服会话按钮,用于在页面上显示一个客服会话按钮,用户点击该按钮后会进入客服会 ...
- 帝国cms建站总结-(分页)
帝国cms分页代码文件t_functions.php 代码为: <?php if(!defined('InEmpireCMS')) { exit(); } define('InEmpireCMS ...
- Linux小脚本
将固定的换包步骤,做成脚本replacePackage.sh,赋予执行权限(chmod +x replacePackage.sh).这样小小自动化也能节约时间呀. replacePackage.s ...
- 如何在Android的ListView中构建CheckBox和RadioButton列表(支持单选和多选的投票项目示例)
引言 我们在android的APP开发中有时候会碰到提供一个选项列表供用户选择的需求,如在投票类型的项目中,我们提供一些主题给用户选择,每个主题有若干选项,用户对这些主题的选项进行选择,然后提交. 本 ...
- python-列表解析、字典解析、集合解析
列表解析.字典解析.集合解析 列表解析 生成一个列表 nums = [1, 3, 9] list_gen = [num**2 for num in nums if x <= 5] # [1, 9 ...
- mysql 延迟添加唯一索引
MySQL [test]> create table tbl_keyword ( -> id int not null auto_increment primary key, -> ...