P1880 石子合并

题目描述

在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入输出格式

输入格式:

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式:

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例


这是一道区间dp十分经典的模板题,让我们揣测一下,前辈们是如何得到这个状态转移方程的。
首先,要计算合并的最大值、最小值,既然是动态规划,我们需要洞悉其中一些关联且确定的状态。
以下以最大值为例。
既然是最大值,那么求得的结果是否满足每一区间都是该区间所能达得到的的最大值?
显然是这样的。反证法:倘若有一个区间不是,那么换做该区间取得最大值的方案,最终结果将比原得分大。显然必定满足任意区间得分一定是该区间内的最大值。
这样我们可以定义状态f[i][j],表示i到j合并后的最大得分。其中1<=i<=j<=N。
既然这样,我们就需要将这一圈石子分割。很显然,我们需要枚举一个k,来作为这一圈石子的分割线。
这样我们就能得到状态转移方程:
f[i][j] = max(f[i][k] + f[k+1][j] + d(i,j));其中,1<=i<=<=k<j<=N。
d(i,j)表示从i到j石子个数的和。
那么如何编写更快的递推来解决这个问题?
在考虑如何递推时,通常考虑如下几个方面:
是否能覆盖全部状态?
求解后面状态时是否保证前面状态已经确定?
是否修改了已经确定的状态?
也就是说,在考虑递推顺序时,务必参考动态规划的适应对象多具有的性质,具体参考《算法导论》相关或百度百科或wiki。
既然之前说过我们需要枚举k来划分i和j,那么如果通过枚举i和j进行状态转移,很显然某些k值时并不能保证已经确定过所需状态。
如,i=1 to 10,j=1 to 10,k=1 to 9.当i=1,j=5,k=3时,显然状态f[k+1][j]没有结果。
那么,我们是不是应该考虑枚举k?
但这样i和j就难以确定了。
我们不难得到一个两全的方法:枚举j-i,并在j-i中枚举k。这样,就能保证地推的正确。

上代码。
#include<iostream>
#include<cstdio>
#include<cmath> using namespace std; int n,minl,maxl,f1[300][300],f2[300][300],num[300];
int s[300];
inline int d(int i,int j){return s[j]-s[i-1];}
//转移方程:f[i][j] = max(f[i][k]+f[k+1][j]+d[i][j]; int main()
{
scanf("%d",&n);
for(int i=1;i<=n+n;i++)
{
scanf("%d",&num[i]);
num[i+n]=num[i];
s[i]=s[i-1]+num[i];
}
for(int p=1;p<n;p++)
{
for(int i=1,j=i+p;(j<n+n) && (i<n+n);i++,j=i+p)
{
f2[i][j]=999999999;
for(int k=i;k<j;k++)
{
f1[i][j] = max(f1[i][j], f1[i][k]+f1[k+1][j]+d(i,j));
f2[i][j] = min(f2[i][j], f2[i][k]+f2[k+1][j]+d(i,j));
}
}
}
minl=999999999;
for(int i=1;i<=n;i++)
{
maxl=max(maxl,f1[i][i+n-1]);
minl=min(minl,f2[i][i+n-1]);
}
printf("%d\n%d",minl,maxl);
return 0;
}

边界状态还望读者仔细思考(不懂请留言)



放寒假了,是时候刷一波dp过过瘾了。


【洛谷】P1880 石子合并的更多相关文章

  1. 洛谷P1880 石子合并(区间DP)(环形DP)

    To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...

  2. 经典DP 洛谷p1880 石子合并

    https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...

  3. 洛谷P1880 石子合并(环形石子合并 区间DP)

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  4. 洛谷 P1880 石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  5. 洛谷P1880 石子合并

    经典水题....... 断环为链长度乘二,求前缀和区间DP. #include <cstdio> #include <cstring> #include <algorit ...

  6. [codevs1048]石子归并&[codevs2102][洛谷P1880]石子归并加强版

    codevs1048: 题目大意:有n堆石子排成一列,每次可合并相邻两堆,代价为两堆的重量之和,求把他们合并成一堆的最小代价. 解题思路:经典区间dp.设$f[i][j]$表示合并i~j的石子需要的最 ...

  7. 洛谷 P1080 石子合并 ( 区间DP )

    题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...

  8. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  9. P1880 石子合并

    P1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计 ...

随机推荐

  1. Spring MVC(七)--传递JSON参数

    有时候参数的传递还需要更多的参数,比如一个获取用户信息的请求中既有用户ID等基本参数,还要求对查询结果进行分页,针对这种场景,一般都会将分页参数封装成一个对象,然后将它和基本参数一起传给控制器,为了控 ...

  2. 用python获取ip信息

    1.138网站 http://user.ip138.com/ip/首次注册后赠送1000次请求,API接口请求格式如下,必须要有token值 import httplib2 from urllib.p ...

  3. Linux RHEL7(CentOS7源) 安装 Nginx

    安装步骤 1.添加 Nginx 源地址 CentOS7 默认没有提供 Nginx 的源,但 Nginx 自己提供了 sudo rpm -Uvh http://nginx.org/packages/ce ...

  4. java基础之完数判断

    完数: 完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数.它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身.如果一个数恰好等于它的因子之和,则称该 ...

  5. 02_jQuery对象初识(二)筛选器1

    0. HTML对象和jQuery对象的区别: 1.jQuery对象转换成DOM对象,用索引取出具体的标签 2.DOM对象转换成jQuery对象,$(DOM对象) 注意:jQuery对象保存到变量的时候 ...

  6. ArrayBlockingQueue的使用案例:

    ArrayBlockingQueue的介绍: ArrayBlockingQueue,顾名思义:基于数组的阻塞队列.数组是要指定长度的,所以使用ArrayBlockingQueue时必须指定长度,也就是 ...

  7. MVC中视图访问的约定

    通常访问视图的时候,都会去选择访问Views文件夹内对应于Controller同名的文件夹下的某一个视图,这个视图对应于这个Controller类的某一个方法. 其实,也可以让这个方法对应于不同名的c ...

  8. vue elment.style样式修改(第三方组件自生成元素)

    参考:https://blog.csdn.net/dcxia89/article/details/80402490         https://blog.csdn.net/jianglibo102 ...

  9. Apache Pig入门学习文档(一)

    1,Pig的安装    (一)软件要求    (二)下载Pig      (三)编译Pig 2,运行Pig    (一)Pig的所有执行模式    (二)pig的交互式模式    (三)使用pig脚本 ...

  10. HBase功能组件