AtCoder Beginner Contest 156
A - Beginner
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int main() {
//freopen("in.txt","r",stdin);
int n,r;
scanf("%d%d",&n,&r);
if(n>=) printf("%d\n",r);
else printf("%d\n",r+*(-n));
return ;
}
A.cpp
B - Digits
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int main() {
//freopen("in.txt","r",stdin);
int n,k,ans=;
scanf("%d%d",&n,&k);
while(n) {
n/=k;
ans++;
}
printf("%d\n",ans);
return ;
}
B.cpp
C - Rally
题意:在一条直线上,有N个人,分别在Xi位置上,要求找一点使得N个人到该点的距离平方和最小,并输出距离平方和。
数据范围:$1 \leq N,Xi \leq 100$
题解:暴力枚举每一个1~100每个位置即可。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
int a[N];
int main() {
//freopen("in.txt","r",stdin);
int n,ans=1e9;
scanf("%d",&n);
for(int i=,x;i<n;i++) {
scanf("%d",&a[i]);
}
for(int i=;i<=;i++) {
int s=;
for(int j=;j<n;j++) {
s+=(a[j]-i)*(a[j]-i);
}
ans=min(ans,s);
}
printf("%d\n",ans);
return ;
}
C.cpp
D - Bouquet
题意:有n种不同的花,每种一朵,要求至少取1朵但,不能取a朵或b朵花,求能取得方案数(mod 1e9+7)。
数据范围:$2 \leq n \leq 10^{9},1 \leq a < b \leq min(n,2\times 10^{5})$
题解:总方案数-取a朵-取b朵-不取。即为 $2^{n}-C_{n}^{a}-C_{n}^{b}-1$。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int MD=1e9+;
int quick_pow(int x,int y) {
int ans=;
while(y) {
if(y&) ans=1LL*ans*x%MD;
y>>=;
x=1LL*x*x%MD;
}
return ans;
}
void add(int &x,int y) {
x+=y;
if(x>=MD) x-=MD;
if(x<) x+=MD;
}
int main() {
//freopen("in.txt","r",stdin);
int n,a,b;
scanf("%d%d%d",&n,&a,&b);
int ans=quick_pow(,n),s=;
add(ans,-);
for(int i=;i<=b;i++) {
s=1LL*s*(n-i+)%MD,s=1LL*s*quick_pow(i,MD-)%MD;
if(i==a) add(ans,-s);
if(i==b) add(ans,-s);
}
printf("%d\n",ans);
return ;
}
D.cpp
E - Roaming
题意:有n个房间,每个房间初始有一个人,每次移动可将一个人移到另一个房间,求k次移动后n个房间的状态数。
数据范围:$3 \leq n \leq 2\times 10^{5},2 \leq k \leq 10^{9}$
题解:考虑房间人数为0的数量。
1.没有房间的人数为0的移法:把1移到2,然后2~3来回移动k-2次,最后在移回1。
2.有且只有一个房间的人数为0的移法:把1移到其它房间,然后在其它房间任意移动。
3.超过一个房间的人数为0的移法:结合上面两种移法即可。
枚举0的个数i,然后就是将i个人分到n-i的房间的子问题。
即为:$\sum_{0}^{min(k,n-1)}C_{n}^{i}*C_{n-1}^{i}$
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=4e5+;
const int MD=1e9+;
int f[N],inv[N];
int quick_pow(int x,int y) {
int ans=;
while(y) {
if(y&) ans=1LL*ans*x%MD;
y>>=;
x=1LL*x*x%MD;
}
return ans;
}
int C(int n,int m) {
return 1LL*f[n]*inv[m]%MD*inv[n-m]%MD;
}
void add(int &x,int y) {
x+=y;
if(x>=MD) x-=MD;
}
void init() {
f[]=;
for(int i=;i<N;i++) f[i]=1LL*f[i-]*i%MD;
inv[N-]=quick_pow(f[N-],MD-);
for(int i=N-;i>=;i--) inv[i]=1LL*inv[i+]*(i+)%MD;
}
int main() {
//freopen("in.txt","r",stdin);
init();
int n,k,ans=;
scanf("%d%d",&n,&k);
k=min(k,n-);
for(int i=;i<=k;i++) {
add(ans,1LL*C(n,i)*C(n-,i)%MD);
}
printf("%d\n",ans);
return ;
}
E.cpp
F - Modularness
题意:有k个非负整数di,q个查询,每次查询给三个整数n,x,m,构造出一个长度为n的序列,其中:
$a_{0}=x,a_{i}=a_{i-1}+d_{(i-1) \bmod k}$,输出存在多少个下标i(0<=i<n-1)满足$a_{i} \bmod m <a_{i+1}\bmod m$。
数据范围:$1 \leq k,q \leq 5000,0 \leq di,xi \leq 10^{9},2 \leq ni,mi \leq 10^{9}$
题解:总数 - $a_{i} \bmod m =a_{i+1}\bmod m$的数目 - $a_{i} \bmod m >a_{i+1}\bmod m$的数目。
可以先将di对m取模,这样di是一个小于m的数。
1.$a_{i} \bmod m =a_{i+1}\bmod m:di=0$
2.$a_{i} \bmod m >a_{i+1}\bmod m:\left \lfloor \frac{a_{i}}{m} \right \rfloor=\left \lfloor \frac{a_{i+1}}{m} \right \rfloor-1$
1可以很轻易的算出,2等价于$\left \lfloor \frac{a_{n-1}}{m} \right \rfloor - \left \lfloor \frac{a_{0}}{m} \right \rfloor$。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=5e3+;
int d[N],t[N],k,q;
ll cal(int n,int x,int m) {
ll s=;
for(int i=;i<k;i++) {
t[i]=d[i]%m;
if(t[i]==) t[i]=m;
s+=t[i];
}
ll ans=x+s*((n-)/k);
for(int i=;i<(n-)%k;i++) {
ans+=t[i];
}
return n--(ans/m-x/m);
}
int main() {
//freopen("in.txt","r",stdin);
scanf("%d%d",&k,&q);
for(int i=;i<k;i++) {
scanf("%d",&d[i]);
}
for(int i=,n,x,m;i<q;i++) {
scanf("%d%d%d",&n,&x,&m);
printf("%lld\n",cal(n,x,m));
}
return ;
}
F.cpp
AtCoder Beginner Contest 156的更多相关文章
- AtCoder Beginner Contest 100 2018/06/16
A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...
- AtCoder Beginner Contest 052
没看到Beginner,然后就做啊做,发现A,B太简单了...然后想想做完算了..没想到C卡了一下,然后还是做出来了.D的话瞎想了一下,然后感觉也没问题.假装all kill.2333 AtCoder ...
- AtCoder Beginner Contest 053 ABCD题
A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...
- AtCoder Beginner Contest 136
AtCoder Beginner Contest 136 题目链接 A - +-x 直接取\(max\)即可. Code #include <bits/stdc++.h> using na ...
- AtCoder Beginner Contest 137 F
AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...
- AtCoder Beginner Contest 076
A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...
- AtCoder Beginner Contest 079 D - Wall【Warshall Floyd algorithm】
AtCoder Beginner Contest 079 D - Wall Warshall Floyd 最短路....先枚举 k #include<iostream> #include& ...
- AtCoder Beginner Contest 064 D - Insertion
AtCoder Beginner Contest 064 D - Insertion Problem Statement You are given a string S of length N co ...
- AtCoder Beginner Contest 075 D - Axis-Parallel Rectangle【暴力】
AtCoder Beginner Contest 075 D - Axis-Parallel Rectangle 我要崩溃,当时还以为是需要什么离散化的,原来是暴力,特么五层循环....我自己写怎么都 ...
随机推荐
- 为什么双击打开py文件时窗口瞬间关闭了?
当前理解,py文件里没有input() 等暂停程序运行的函数,程序运行速度太快,运行完就立马关闭了. input()调用后,程序会立即暂停,等待用户输入
- Redis(二):redis命令构建及关键属性解析
上一篇文章,我们从框架层面,主要介绍了redis的启动过程,以及主要的命令处理流程逻辑.这些更多的都是些差不多的道理,而要细了解redis,则需要更细节的东西. 今天我们稍微内围的角度,来看看几个命令 ...
- Excel查找匹配函数的16种方法
作者:高顿初级会计链接:https://zhuanlan.zhihu.com/p/79795779来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 1.普通查找 查找李晓 ...
- Nmap使用教程(一)
基本扫描技术 扫描单个网络 nmap 192.168.1.1/www.baidu.com 扫描多个网络/目标 nmap 192.168.1.1 192.168.1.2 #将扫描同个网段内不同的ip地址 ...
- Entity Framework 6+ 连接Mysql
好吧.这个博客开不开的 我感觉.. 都一样了. 前言: 公司改造Sqlserver ->Mysql Sql2016老夫对不住你啊.. 好 前沿结束. 需要的家伙: 1.mysql-for-vis ...
- 「 从0到1学习微服务SpringCloud 」06 统一配置中心Spring Cloud Config
系列文章(更新ing): 「 从0到1学习微服务SpringCloud 」01 一起来学呀! 「 从0到1学习微服务SpringCloud 」02 Eureka服务注册与发现 「 从0到1学习微服务S ...
- 推荐几个高质量图片网站,再也不怕没图装X了
这几个图片网站都是高质量的图片网站,建议收藏! 找个高逼格的图片发票圈,不再难了. Unsplash 网址:https://unsplash.com Unsplash是一个免费高质量照片的网站,照片都 ...
- 实验五:配置Eth-Trunk链路聚合(手工负载分担模式)
1.配置图 2.配置命令 LSW1的eth trunk 1配置如下: 配置命令如下: [S1]Eth-Trunk1 创建Eth-Trunk1端口 [S1-Eth-Trunk1]mode lacp-st ...
- vijos 分梨子
点击打开题目 很有(wei)趣(suo)的一道题 暴力解法也不难,枚举大小下限与甜度下限,在一个一个地试 显然 O(n^3) 炸掉 但如何将其缩短,只好从那个式子来入手了: C1⋅(ai−a0)+C2 ...
- 机器学习-TensorFlow应用之 binned features, Cross features和optimizer
概述 这一节主要介绍一下TensorFlow在应用的过程中的几个小的知识点,第一个是关于features的处理的,例如Bucketized (Binned) Features 和 Feature sc ...