<第一周>降维
PCA###
矩阵的主成分就是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值为第一主成分,以此类推
主要过程####
- 对所有样本进行中心化
- 计算样本的协方差矩阵 XX.T
- 对协方差矩阵做特征值分解
- 取最大的几个特征向量
使用方法####
sklearn sklearn.decomposition.PCA
参数:
- n_components
- svd_solver auto默认 full arpack randomized 特征值分解的方法
对鸢尾花进行降维
# -*- coding: utf-8 -*-
"""
Created on Mon May 22 17:33:47 2017
@author: sfzyk
"""
import numpy as np
import sklearn.decomposition as skld
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
data=load_iris()
#字典形式
y=data.target
x=data.data
pca=skld.PCA(n_components=2)
reduced_x=pca.fit_transform(x)
red_x=[]
red_y=[]
blue_x=[]
blue_y=[]
green_x=[]
green_y=[]
for i in range(len(reduced_x)):
if y[i]==0 :
red_x.append(reduced_x[i][0])
red_y.append(reduced_x[i][1])
elif y[i]==1:
blue_x.append(reduced_x[i][0])
blue_y.append(reduced_x[i][1])
elif y[i]==2:
green_x.append(reduced_x[i][0])
green_y.append(reduced_x[i][1])
#plt.plot(red_x,red_y,'or',blue_x,blue_y,'bo',green_x,green_y,'go')
plt.scatter(red_x,red_y)
plt.scatter(green_x,green_y)
plt.scatter(blue_x,blue_y)
plt.show()
非负矩阵分解###
NMF
给定非负矩阵V
NMF 可以找到一个W 与H 值使得WH近似等于矩阵V中的值
W矩阵 基础图像矩阵,相当于抽取出来的特征
H矩阵 稀疏矩阵
最小函数
传统上 欧氏距离
\( argmin\frac{1}{2}||X-WH||2=\frac{1}{2}(X_{ij}-WH_{ij})2\)
KL散度的求解方法
\( graminJ(W,H)= \sum_{ij}(X_{ij}ln\frac{X_ij}{WH_ij}-X_{ij}+WH_{ij}) \)
具体求解是迭代算法
sklearn.decomposition.NMF 算
参数####
- n_components 用于只等分解后矩阵的单个维度k
- init W矩阵和H矩阵初始化方式,默认为nndsvdar
- ...
NMF的使用方法
NMF 人脸数据特征提取
设置k=6
H k*400
W 4096k V 4096400
# -*- coding: utf-8 -*-
"""
Created on Wed May 24 12:06:56 2017
@author: sfzyk
"""
import matplotlib.pyplot as plt
import sklearn.decomposition as skld
import sklearn.datasets as skldata
import numpy as np
n_row,n_col=2,3
n_compeonents=6
image_shape=(64,64)
dataset=skldata.fetch_olivetti_faces(shuffle=True,random_state=np.random.RandomState(0))
def plot_gallery(title,images,n_col=n_col,n_row=n_row):
plt.figure(figsize=(2.*n_col,2.26*n_row))
plt.suptitle(title,size=16)
for i,comp in enumerate(images):
plt.subplot(n_row,n_col,i+1)
vmax=max(comp.max(),-comp.min())
plt.imshow(comp.reshape(image_shape),cmap=plt.cm.gray,interpolation='nearest',vmin=-vmax,vmax=vmax)
plt.subplots_adjust(0.01,0.05,0.99,0.93,0.04,0.)
plot_gallery("RAW",dataset.images[0:6])
estimators=[('PCA',skld.PCA(n_components=6,whiten=True)),('NMF',skld.NMF(n_components=6,init='nndsvda',tol=5e-3))]
faces=dataset.data
for name,estimator in estimators:
estimator.fit(faces)
components_=estimator.components_
plot_gallery(name,components_[:])
plt.show()
<第一周>降维的更多相关文章
- 第一周 总结笔记 / 斯坦福-Machine Learning-Andrew Ng
课程主页:https://www.coursera.org/learn/machine-learning/home/welcome 收集再多的资料也没用,关键是要自己理解总结,做笔记就是一个归纳总结的 ...
- Surprise团队第一周项目总结
Surprise团队第一周项目总结 团队项目 基本内容 五子棋(Gobang)的开发与应用 利用Android Studio设计一款五子棋游戏,并丰富其内涵 预期目标 实现人人模式:2个用户可以在同一 ...
- 20145213《Java程序设计》第一周学习总结
20145213<Java程序设计>第一周学习总结 教材学习内容总结 期待了一个寒假,终于见识到了神秘的娄老师和他的Java课.虽说算不上金风玉露一相逢,没有胜却人间无数也是情理之中,但娄 ...
- 20145206邹京儒《Java程序设计》第一周学习总结
20145206 <Java程序设计>第1周学习总结 教材学习内容总结 1.三大平台:Java SE.Java EE与Java ME.Java SE是各应用平台的基础,分为四个主要的部分: ...
- 20145304 刘钦令 Java程序设计第一周学习总结
20145304<Java程序设计>第1周学习总结 教材学习内容总结 1995年5月23日,是公认的Java的诞生日,Java正式由Oak改名为Java. Java的三大平台是:Java ...
- 20145330孙文馨 《Java程序设计》第一周学习总结
20145330孙文馨 <Java程序设计>第一周学习总结 教材学习内容总结 刚开始拿到这么厚一本书说没有压力是不可能的,开始从头看觉得很陌生进入不了状态,就稍微会有一点焦虑的感觉.于是就 ...
- 20145337《JAVA程序设计》第一周学习总结
# 20145337 <Java程序设计>第1周学习总结 ## 教材学习内容总结 第一章 -Java最早是Sun公司撰写Star7应用程序的程序语言 -根据应用领域不同,有Java SE. ...
- Linux内核设计第一周 ——从汇编语言出发理解计算机工作原理
Linux内核设计第一周 ——从汇编语言出发理解计算机工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 编写songchenning5315.c文件 图2 将c文件汇编成32位机器语言 ...
- 20135328信息安全系统设计基础第一周学习总结(Linux应用)
学习计时:共xxx小时 读书: 代码: 作业: 博客: 一.学习目标 1. 能够独立安装Linux操作系统 2. 能够熟练使用Linux系统的基本命令 3. 熟练使用Linux中用户管理命令/ ...
随机推荐
- Python之MySQL语法(增删改查)
-- ID: 新闻的唯一标示 -- title: 新闻的标题 -- content: 新闻的内容 -- created_at: 新闻添加的时间 -- types: 新闻的类型 -- image: 新的 ...
- 开年巨制!千人千面回放技术让你“看到”Flutter用户侧问题
导语 发布app后,开发者最头疼的问题就是如何解决交付后的用户侧问题的还原和定位,是业界缺乏一整套系统的解决方案的空白领域,闲鱼技术团队结合自己业务痛点在flutter上提出一套全新的技术思路解决这个 ...
- TZ_03_mybatis的xml开发
1.通过Student.xml编写sql来操作数据库 1>insert语句插入后返回主键 加入标签useGeneratedKeys=“true” keyProperty=“oid” 中 keyP ...
- CentOS 6.5 使用Apache的VirtualHost映射SVN端口
vi /etc/httpd/conf.d/subversion #修改Apache的SVN配置,如果没有配置过则略过 #<Location /svn> # DAV svn # SVNPar ...
- jps的用法及常见问题介绍
1.jps的作用 jps类似linux的ps命令,不同的是ps是用来显示进程,而jps只显示java进程,准确的说是当前用户已启动的部分java进程信息,信息包括进程号和简短的进程command. 2 ...
- 初识OpenSSL
首先来认识一下SSL和TLS SSL:Secure Sockets Layer 安全套接层协议 由Netscape公司在1994年发布: TLS:Transport Layer Security 传输 ...
- 错误号码1130:Host 'XXX' is not allowed to connect to this MySQL server
今天在linux机器上装了一个mysql,想通过sqlyog远程连接过去,发生了:错误号码1130:Host 'XXX' is not allowed to connect to this MySQL ...
- spring源码学习之bean的加载(二)
这是接着上篇继续写bean的加载过程,好像是有点太多了,因为bean的加载过程是很复杂的,要处理的情况有很多,继续... 7.创建bean 常规的bean的创建时通过doCreateBean方法来实现 ...
- jquery版本冲突问题
开发过程中,我们常常会遇到这种问题: 我们需要做一个新的功能,需要插入一个新的插件,使用新版的jquery,但原版的jquery已经被很多函数使用,不能直接修改.这时候我们可以现将$转移给$170($ ...
- 使用JSP渲染Web视图
Pom文件引入以下依赖 注意,创建SpringBoot整合JSP,一定要为war类型,否则会找不到页面 不要把jsp页面存放在Resources目录下,resources目录是给springboot打 ...