1、在一个完整的数据转换流程里往往涉及到多个具有衍生关系RDD,这些RDD其实是通过逻辑串联来利用装饰器模式层层包装扩展的的一堆对象,这些相邻RDD间必须有继承关系。并且比Java中的装饰器来的更彻底,借助Scala的抽象控制特性,这一系列RDD不代表任何实际数据,也不负责装载数据,描述的是纯粹的逻辑抽象DAG,只有调用了尾函数后才会触发逻辑DAG的执行。

2、弹性:分别表现在如下几个方面
血缘:可以使用cache、checkpoint等机制灵活改变血缘继承关系。
计算:计算时可以灵活的使用内存和磁盘(早期shuffle无磁盘参与,存在性能瓶颈和OOM风险,后期加入)。
分区:在创建RDD和转换过程中可以灵活的调整数据分区。
容错:利用checkpoint持久化机制,可以在流程不同点位实现容错。

3、分布式,可分区,每个分区发可以分配不同的Executor,实现对数据的并行计算。对于集合数据,用户可以利用并行度来指定分区大小,对于内容不可预知的文件数据,用户只能指定最小并行度,具体分多少区,由分区算法决定,Spark-RDD底层使用的是Hadoop的分区算法。

4、不可变,RDD类底层实现中没有向用户暴露修改的API,所以用户无法直接修改源RDD的内容,要实现数据在逻辑上的改变,就只能通过转换操作来实现,且转换结果必须是新的RDD对象。

5、迁移数据不如移动计算的位置,移动数据涉及网络IO,其成本往往较高,所以尽量让计算逻辑从本地取数据。所以Spark在分配任务时,优先将任务分配到源数据分片所在的节点上。
为了实现负载均衡,当某些Executor进程空闲下来后,首先会从进程本地获取数据,如果不成功就会从本机上其他Executor进程获取数据,如果仍拿不到,就会从本机架上的其他机器的Executor获取数据,最后才会从其他机架的机器上获取数据,总之就是一最小的IO代价为原则,从最近的地方获取数据。

6、算子:人类解决问题的思维模式一般是渐进式的,也就是从问题的初始局面到被解决的整个过程通常是被多步分解的,每个步骤的推进伴随着问题状态的改变,要改变问题的状态就需要做相应的操作,这些操作就统称为Operator即
算子。一个算子可以由一个命令、命令组合、函数、函数组合构成。所有的RDD方法都是算子,它们又可以分为做转换的TransformationOperator和促发计算的ActionOperator。

7、在一个Spark用户作业程序中,创建SparkContext对象所在的类的实例化对象,被称之为Driver对象。程序里只有算子中直接参与计算的代码才会被分配到Executor上去执行,负责真实数据的计算,其他部分【包括flatMap算子】均在Driver中执行。如rdd.flatMap(it => it * 2);这段代码,只有it * 2这段代码才承载着真正的计算逻辑,所以只有它会被分配到Executor上去执行。

8、创建:
1.从集合创建:sc.makeRDD(0 to 10, 4)
2.从别的RDD创建:RDD2 = RDD1.map()
3.从外部文件读取:sc.textFile("/opt/data/text.txt")

9、RDD.map、RDD.mapPartitions、RDD.mapPartitionsWithIndex三个算子的区别:
1.RDD.map(it => it * 2):会根据集合中元素的数量N,map算子在Driver中执行N次,也会分发真实计算逻辑task【it * 2】到Executor N次,会额外增加分发开销
2.RDD.mapPartitions(dataList => {dataList.foreach( { _ * 2 }):dataList代表的是一个分区上的所有数据元素的集合,会根据数据分区数量P,mapPartitions算子在Driver中执行P次,计算逻辑【 {dataList.foreach( { _ * 2 }】会分发到Executor P次,各个Executor上的真实计算逻辑执行次数与对应分片上的数据集元素个数相同,最终计算逻辑执行的总次数还是等于整个RDD元素的数量N。这样可以大大减少了计算逻辑分发的次数,由于分发过程涉及进程间通信,而进程间通信比内存中通信至少慢三个数量级,所以更高效。
但是也存在一个严重风险,在一个Executor上,一个算子的计算逻辑对一个分区数据的处理,执行持续的时间是以整个分区处理时间为生命周期,如果分区中数据源源不断地增加,整个处理过程就可能持续很久,程序对数据的引用一直没有断开,GC无法回收已处理数据占用的内存,对内存的占用势必不断增加,可能引发OOM。
3.RDD.mapPartitionsWithIndex{
case(pId, dataList) => {
dataList.map((_, "pId=" + pId))
}
在计算和性能上与mapPartitions算子是一样的,但它可以拿到分区的序号。

10、RDD分区与任务的分配:一个partition上的数只能由一个task来消费,通常一个分区就对应一个task,适当增加RDD分区数量能提高App的并行度,每个task可以灵活的分配到Executor上去执行。【与Flink类似,operator是DAG层面的东西,构成DAG的节点,属于逻辑执行计划。而task则属于物理执行计划,是operator在具体计算环境下的真实执行体,一个operator可能拥有代表其逻辑的多个task作为分身在集群中执行】

11、当上游RDD的一个分区中的元素被分散到多个下游RDD分区(宽依赖),必然经过Shuffle操作。如果上游分区中的元素以汇聚的形式流向下游分区,亦即保证了来自同一个上游分区的所有元素,到达下游RDD时仍然能团结在一个下游分区中就不会发生shuffle,此时下游有效分区数不会超过上游分区数。
***
12、一个SparkContext代表着一个App,执行流程每遇到一个Action算子形成一个新Job,在每个Job内每遇到一次Shuffle操作形成一个新Stage,在一个Stage中可以包含流水线的一或多个算子,这些算子形成OperatorChain,系统根据Stage中最后一个RDD的分区数N,并依照OperatorChain的计算逻辑建立N个Task。
在范围上大致关系:App > Job > Stage > Task,从左至右范围依次减小,呈现一对多的关系。

Spark之RDD本质的更多相关文章

  1. Spark操作算子本质-RDD的容错

    Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群 ...

  2. spark中RDD的转化操作和行动操作

    本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...

  3. [转]Spark学习之路 (三)Spark之RDD

    Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...

  4. Spark学习之路 (三)Spark之RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

  5. Spark之 RDD

    简介 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合. Resilien ...

  6. Spark之RDD的定义及五大特性

    RDD是分布式内存的一个抽象概念,是一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,能横跨集群所有节点并行计算,是一种基于工作集的应用抽象. RDD底层存储原理:其数据分布存储于多台机器上 ...

  7. Spark 中 RDD的运行机制

    1. RDD 的设计与运行原理 Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务 ...

  8. Spark之RDD

    Spark学习之路Spark之RDD 目录 一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数 ...

  9. Spark RDD :Spark API--Spark RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

随机推荐

  1. spring cloud的配置

    注解篇 @EnableEurekaServer 注解启动一个服务注册中心提供给其他应用进行对话 @EnableDiscoveryClient 激活Eureka中的DiscoveryClient实现 配 ...

  2. KMP——强大的next数组

    \(KMP\) 的原理不在这里仔细讲了,主要说说最近刷题总结出的 \(next\) 数组的强大功能. 部分例题来自<信息学奥赛一本通>的配套练习. 基于定义--字符串相同前后缀 " ...

  3. php变量中两种特殊类型

    第一种----资源 资源(resource):资源是由专门的函数来建立和使用的,例如打开文件.数据连接.图形画布.我们可以对资源进行操作(创建.使用和释放).任何资源,在不需要的时候应该被及时释放.如 ...

  4. 记录 解决ubuntu16.04 ‘E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用) ’

    当运行sudo apt-get install/update/其他命令时,会出现如下提示: E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不 ...

  5. Easy C 编程 in Linux

    入坑Ubuntu有4,5天了,当时各种不习惯,但现在渐渐喜欢上了这种简单大方的显示界面和快速高效的命令行模式,各种没有的功能也都有网页版,非常不错呢. 现在最让我感到神奇之处,便是Linux的C编程是 ...

  6. 吉哥系列故事——恨7不成妻(数位dp)

    吉哥系列故事--恨7不成妻 传送门 Problem Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥 ...

  7. Linux测试环境简单使用教程

    0. 本blog 简单说明一下 Linux测试环境尤其是 CentOS测试环境的开发测试使用, 教程可能不会很长, 主要是入门. 0.1 Linux简介: Linux 的历史基本上不用阐述, linu ...

  8. Git 初级使用 windows & Ubuntu

    目的:有一段代码要进行几个人同时维护,但是传来传去不方便,所以希望在github上实现,前提是每台机器都有git 在github 上新建一个项目 然后会看到,大体上就按这执行就可以 在Windows系 ...

  9. Exception | java.security.NoSuchProviderException: no such provider: BC

    背景 今天在用PGP key做JWT签名和验签的时候,转换报了如下错误: org.bouncycastle.openpgp.PGPException: exception on setup: java ...

  10. Android: Fragment编程指南

    本文来自于www.lanttor.org Fragment代表了Activity里的一个行为,或者Activity UI的一部分.你可以在一个activity里构造多个Fragment,也可以在多个a ...