题目描述

小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

输入格式

第一行两个整数n,m,表示点的个数和边的个数。

接下来m行每行两个数字u,v,表示一条u到v的边。

输出格式

一行一个数字,表示到公司的最少秒数。

输入输出样例

输入 #1复制

4 4
1 1
1 2
2 3
3 4
输出 #1复制

1

说明/提示

【样例解释】

1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

【数据范围】

50%的数据满足最优解路径长度<=1000;

100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。

思路

  由于数据量很小,可以考虑Floyd,而由于空间跳跃的缘故,直接跑Floyd出来的最短路不一定是真正的最短路。

  于是用倍增的思想来维护一下两点间的最短路。

  可以建立一个bool倍增数组 f[i][j][k] 来表示点对 i,j 间可以由空间跳跃一次跳达。

  如何处理出所有的这样的点对。

  可以枚举 K 跑 Floyd。因为是边权小于Maxlongint的,所以在 1 ~ 64 的范围内枚举k就可以了。

  令中转点为 t , 显然如果 i 到 t 是 2^(k-1) 的距离, 且 t 到 k 是 2^(k-1) 的距离,就知道一定有 i -> j 是 2 ^ k 的距离,此时更新 f[i][j][k] 和 dis[i][j] 即可。

CODE

 #include <bits/stdc++.h>
#define dbg(x) cout << #x << "=" << x << endl
#define eps 1e-8
#define pi acos(-1.0) using namespace std;
typedef long long LL; template<class T>inline void read(T &res)
{
char c;T flag=;
while((c=getchar())<''||c>'')if(c=='-')flag=-;res=c-'';
while((c=getchar())>=''&&c<='')res=res*+c-'';res*=flag;
} namespace _buff {
const size_t BUFF = << ;
char ibuf[BUFF], *ib = ibuf, *ie = ibuf;
char getc() {
if (ib == ie) {
ib = ibuf;
ie = ibuf + fread(ibuf, , BUFF, stdin);
}
return ib == ie ? - : *ib++;
}
} int qread() {
using namespace _buff;
int ret = ;
bool pos = true;
char c = getc();
for (; (c < '' || c > '') && c != '-'; c = getc()) {
assert(~c);
}
if (c == '-') {
pos = false;
c = getc();
}
for (; c >= '' && c <= ''; c = getc()) {
ret = (ret << ) + (ret << ) + (c ^ );
}
return pos ? ret : -ret;
} const int maxn = 1e4 + ; int n,m; bool f[][][];
int dis[][]; void init() {
for ( int i = ; i <= n; ++i ) {
for ( int j = ; j <= n; ++j ) {
if(i == j) {
dis[i][j] = ;
}
else {
dis[i][j] = 0x3f3f3f3f;
}
}
}
} int main()
{
scanf("%d %d",&n, &m);
init();
int u, v;
for ( int i = ; i <= m; ++i ) {
scanf("%d %d",&u, &v);
dis[u][v] = ;
f[u][v][] = ;
}
for (int t = ; t <= ; ++t) {
for (int k = ; k <= n; ++k) {
for (int i = ; i <= n; ++i) {
for (int j = ; j <= n; ++j) {
if(f[i][k][t-] && f[k][j][t-]) {
f[i][j][t] = ;
if(i != j) dis[i][j] = ;
else
dis[i][j] = ;
}
}
}
}
}
for (int k = ; k <= n; ++k) {
for (int i = ; i <= n; ++i) {
for (int j = ; j <= n; ++j) {
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}
printf("%d\n",dis[][n]);
return ;
}

P1613 跑路【倍增】【最短路】的更多相关文章

  1. 洛谷 P1613 跑路 (倍增 + DP + 最短路)

    题目链接:P1613 跑路 题意 给定包含 \(n\) 个点和 \(m\) 条边的有向图,每条边的长度为 \(1\) 千米.每秒钟可以跑 \(2^k\) 千米,问从点 \(1\) 到点 \(n\) 最 ...

  2. P1613 跑路——倍增思想,floyd

    https://www.luogu.org/problemnew/show/P1613 他有一个跑路机器,每次只能跑2k   (单位)路程,每相邻两个点的路程为1,也就是说如果连边1——>2—— ...

  3. P1613 跑路 倍增思想 + 邻接矩阵

    题意 给定一个有向图,每条边的花费为1.现在有一个空间跑路器,可以走2^k长度的路,只用花1秒的时间.问从1走到n最少的时间.n <= 50, k <= 64. 思路 这道题说是倍增,但是 ...

  4. P1613 跑路(倍增 + floyd)

    https://www.luogu.org/problemnew/show/P1613 思路: 1.读入 2.建图 3.对于每一个点,向距离它 2^k 长度的点连一条长度为 1 的边 4.在新图上跑1 ...

  5. LUOGU P1613 跑路 (倍增floyd)

    解题思路 倍增$floyd$,首先设$f[i][j][k]$表示$i$这个点到$j$的距离能否为$2^k$,初值是如果x,y之间有边,那么$f[x][y][0]=1$.转移方程就是$f[i][j][t ...

  6. 洛谷P1613 跑路(最短路+倍增)

    P1613 跑路 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的 ...

  7. [Luogu P1613]跑路 (DP+倍增+最短路)

    题面 传送门:https://www.luogu.org/problemnew/show/P1613 Solution 挺有意思的一道题. 题面已经挺明显的描述出了这题的主要思想:倍增. 先这样想,我 ...

  8. P1613 跑路(倍增)

    P1613 跑路(倍增) 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十 ...

  9. 洛谷 P1613 跑路 解题报告

    P1613 跑路 题目描述 小\(A\)的工作不仅繁琐,更有苛刻的规定,要求小\(A\)每天早上在\(6:00\)之前到达公司,否则这个月工资清零.可是小\(A\)偏偏又有赖床的坏毛病.于是为了保住自 ...

  10. 洛谷——P1613 跑路

    P1613 跑路 题目大意: 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B ...

随机推荐

  1. 半夜了我来发张图 睡觉 ControllerDescriptor 与 ActionDescriptor 之间 的 关系

  2. 团队项目——Alpha1版本

    团队项目-Alpha版本发布1 一.格式描述 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience/ ...

  3. 【WPF学习】第二十九章 元素绑定——将元素绑定到一起

    数据banding的最简单情形是,源对象时WPF元素而且源属性是依赖性属性.前面章节解释过,依赖项属性具有内置的更改通知支持.因此,当在源对象中改变依赖项属性的值时,会立即更新目标对象中的绑定属性.这 ...

  4. 【读书笔记】关于《精通C#(第6版)》与《C#5.0图解教程》中的一点矛盾的地方

    志铭-2020年2月8日 03:32:03 先说明,这是一个旧问题,很久很久以前大家就讨论了, 哈哈哈,而且先声明这是一个很无聊的问题,

  5. cd命令和roscd命令的区别,并解决环境变量问题

    cd命令和roscd命令都是切换到指定目录的命令.不同的是,cd是Linux系统的命令,在使用时必须指定目标目录的完整路径:而roscd是ros系统中的命令,它可以直接切换到指定目录(ros系统中的软 ...

  6. Serverless 的资源评估与成本探索

    Serverless 布道师在讲解 Serverless 架构和云主机等区别的时候,总会有类似的描述: 传统业务开发完成想要上线,需要评估资源使用.根据评估结果,购买云主机,并且需要根据业务的发展不断 ...

  7. Centos7桥接设置网络并使用xrdp+tigervnc实现桌面远程访问

    最近用到了虚拟机,之前虚拟机的网络配置使用的NAT配置好了,但是无论怎样设置都无法使用局域网内的其它主机访问虚拟机的服务.经过了一天的折腾,远程主机仍然连接不上虚拟机服务,后来找到原因,NAT连接模式 ...

  8. Grafana & Graphite & Collectd:监控系统

    简介 监控是运维工作中的一个重要组成部分,今天介绍一套新的监控工具,方便好用,扩展性强,这套工具有三个组件,Grafana & Graphite & Collectd: Grafana ...

  9. python学习(3)关于交互输入及字符串拼接

    input是输入语句,用于人机交互. input() 函数接受一个标准输入数据,返回为 string 类型.如果需要输入的未数字,则需要额外定义. sex=input(“Sex:”) #这里会默认为S ...

  10. java中list的sort()功能如何使用?如果倒序如何正序?

    list.sort()接收一个Comparable接口,其中compare方法是必须实现的,int compare(T o1, T o2);,它接受两个参数:o1,o2. o2表示list排序前的前值 ...