Estimation
给出一个长度为n序列\(\{a_i\}\),将其划分成连续的K段,对于其中一段\([l,r]\),设其中位数为m,定义其权值为\(\sum_{i=l}^r|m-a_i|\),求最小的权值之和,\(n\leq 2000,K\leq 25\)。
解
显然设\(f[i][j]\)表示前i个数划分成j段的的最小权值和,设\(m(i,j)\)为\(i\sim j\)的作为一段的权值,所以有
\]
边界:\(f[0][0]=0\),其余无限大
答案:\(f[n][K]\)
注意到时间复杂度\(2000^2\times 25=10^8\),为一亿,可以险过,关键在于快速求二元函数m,而求m需要解决的是动态维护一段序列中中间大的数,显然中位数的位置是递增的,可以考虑双堆堆顶优化,不难得知对于序列\(b_1,b_2,...,b_p\)而言设其中位数为\(b_q\),于是有权值为
\]
\]
\]
于是对于权值,我们只要维护这样一个式子即可,步骤如下
- 枚举左端点i,设大根堆为H,小根堆为E
- 初始化\(m(i,i)=0,k=-a_i\),H加入\(a_i\)
- 枚举右端点j
- 如果\(a_j\leq H.top()\),那么\(E.push(H.top()),H.pop(),k+=E.top()\times 2,H.push(a_j),k-=a_j\)
- 否则\(E.push(a_j),k+=a_j\)
- 如果\(i-j+1\)为偶数的话,那么\(H.push(E.top()),E.pop(),k-=H.top()\times 2\)
- 计入答案\(m(i,j)=k+(2q-p)\times H.top()\)
参考代码:
#include <iostream>
#include <cstdio>
#include <queue>
#include <functional>
#include <cstring>
#define il inline
#define ri register
#define intmax 0x7fffffff
using namespace std;
int a[2001],m[2001][2001],dp[2001][26];
priority_queue<int,vector<int>,less<int> >H;
priority_queue<int,vector<int>,greater<int> >E;
il void read(int&);
int main(){
int n,K;
while(read(n),read(K),n&&K){
for(int i(1);i<=n;++i)read(a[i]);
for(int i(1),j,k;i<=n;++i){
while(H.size())H.pop();
while(E.size())E.pop();
H.push(a[i]),k=-a[i];
for(j=i+1;j<=n;++j){
if(a[j]<=H.top())
E.push(H.top()),H.pop(),H.push(a[j]),
k-=a[j],k+=E.top()<<1;
else E.push(a[j]),k+=a[j];
if((j-i+1)&1)k-=E.top()<<1,H.push(E.top()),E.pop();
m[i][j]=k+H.top()*((H.size()<<1)-(j-i+1));
}
}memset(dp,2,sizeof(dp)),dp[0][0]=0;
for(int i,j(1),k;j<=K;++j)
for(i=j;i<=n;++i)
for(k=0;k<i;++k)
if(dp[i][j]>dp[k][j-1]+m[k+1][i])
dp[i][j]=dp[k][j-1]+m[k+1][i];
printf("%d\n",dp[n][K]);
}
return 0;
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c==' '||c=='\n'||c=='\r');
ri bool check(false);if(c=='-')check|=true,c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
if(check)x=-x;
}
Estimation的更多相关文章
- 萌新笔记——Cardinality Estimation算法学习(一)(了解基数计算的基本概念及回顾求字符串中不重复元素的个数的问题)
最近在菜鸟教程上自学redis.看到Redis HyperLogLog的时候,对"基数"以及其它一些没接触过(或者是忘了)的东西产生了好奇. 于是就去搜了"HyperLo ...
- Noise Contrastive Estimation
Notes from Notes on Noise Contrastive Estimation and Negative Sampling one sample: \[x_i \to [y_i^0, ...
- 手势估计- Hand Pose Estimation
http://blog.csdn.net/myarrow/article/details/51933651 1. 目前进展 1.1 相关资料 1)HANDS CVPR 2016 2 ...
- SQL Server 2014里的针对基数估计的新设计(New Design for Cardinality Estimation)
对于SQL Server数据库来说,性能一直是一个绕不开的话题.而当我们去分析和研究性能问题时,执行计划又是一个我们一直关注的重点之一. 我们知道,在进行编译时,SQL Server会根据当前的数据库 ...
- Click Models for Web Search(2) - Parameter Estimation
在Click Model中进行参数预估的方法有两种:最大似然(MLE)和期望最大(EM).至于每个click model使用哪种参数预估的方法取决于此model中的随机变量的特性.如果model中的随 ...
- 解读Cardinality Estimation<基数估计>算法(第一部分:基本概念)
基数计数(cardinality counting)是实际应用中一种常见的计算场景,在数据分析.网络监控及数据库优化等领域都有相关需求.精确的基数计数算法由于种种原因,在面对大数据场景时往往力不从心, ...
- Time vs Story Points Estimation [转]
One of the most common questions we get is whether to estimate in time or points. It seems like poin ...
- 【Deep Learning学习笔记】Efficient Estimation of Word Representations in Vector Space_google2013
标题:Efficient Estimation of Word Representations in Vector Space 作者:Tomas Mikolov 发表于:ICLR 2013 主要内容: ...
- Comparing randomized search and grid search for hyperparameter estimation
Comparing randomized search and grid search for hyperparameter estimation Compare randomized search ...
- 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...
随机推荐
- FP-Tree -关联规则挖掘算法(转载)
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支 支持度和置信度 严格地说Apriori和FP- ...
- Maven Optional & Exclusions使用区别
Optional和Exclusions都是用来排除jar包依赖使用的,两者在使用上却是相反. Optional定义后,该依赖只能在本项目中传递,不会传递到引用该项目的父项目中,父项目需要主动引用该依赖 ...
- [Code+#3]博弈论与概率统计
题目 记得曾经和稳稳比谁后抄这个题的题解,看来是我输了 不难发现\(p\)是给着玩的,只需要求一个总情况数除以\(\binom{n+m}{n}\)就好了 记\(i\)为无效的失败次数,即\(\rm A ...
- erlang在windows下和虚拟机节点通信
版权声明:博客将逐步迁移到 http://cwqqq.com https://blog.csdn.net/cwqcwk1/article/details/24738599 在Linux下部署erlan ...
- javascript中的insertBefore方法
<SCRIPT LANGUAGE="JavaScript"> window.onload=function(){ var a =document.createEleme ...
- shell脚本将命令的结果赋值给变量的2种写法
Shell 也支持将命令的执行结果赋值给变量,常见的有以下两种方式: variable=`command`variable=$(command) 第一种方式把命令用反引号` `(位于 Esc 键的下方 ...
- Redis Desktop Manager可视化工具连接不上redis
1.在centos中启动redis之后,redis进程也是可查的,但是一连接可视化工具就报错: can't connect to redis-server 2.原因分析: ①首先redis是肯定已经开 ...
- DELPHI中如何让FORM窗体透明,只显示控件?
DELPHI中如何让FORM窗体透明,只显示控件?分享到: 对我有用[0] 丢个板砖[0] 引用 | 举报 | 管理 回复次数:7largewanglargewanglargewang等级:Blank ...
- NX文件名与工程图名自动关联
1.先去D:\Program Files\Siemens\NX 9.0\LOCALIZATION\prc\simpl_chinese\startup里,把默认的图框模板替换成自己定制好的模板,如何替换 ...
- adb shell top 使用
adb shell top 一.其中相关参数: >adb shell top -h Usage: top [ -m max_procs ] [ -n iterations ] [ -d del ...