题意

题目主要说的是,有两只青蛙,在两个石头上,他们之间也有一些石头,一只青蛙要想到达另一只青蛙所在地方,必须跳在石头上。题目中给出了两只青蛙的初始位置,以及剩余石头的位置,问一只青蛙到达另一只青蛙所在地的所有路径中的“the frog distance”中的最小值。

解释一下“the frog distance”:题目中给出了一段解释“The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.” 其中 jump range 实际上就是指一条通路上的最大边,该词前面的minimum就说明了要求所有通路中最大边中的最小边。如果直接说前面这句话你可能感觉比较绕,通过上面的解释后我想你应该明白了吧。

通过上面的分析,不难看出这道题目的是求所有通路中最大边中的最小边,可以通过利用floyd,Dijkstra算法解决该题目,注意这道题可不是让你求两个点之间的最短路的,只不过用到了其中的一些算法思想。当然如果用Dijkstr算法解决该题需要一个特别重要的方程,即

d[j] = min(d[j], max(d[x], dist[x] [j])); //dis[j]为从1号石头到第j号石头所有通路中最长边中的最小边.

如果用floyd算法解决该题则用到方程

dist[i][j] = min(dist[i][j], max(dist[i][k], dist[k][j]));

AC代码

利用Dijkstra算法:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef long double ld;
int n;
const int maxn = 200 + 10;
const int inf = 0x3f3f3f3f;
int x[maxn], y[maxn], vis[maxn];
double dist[maxn][maxn], d[maxn];
double solve()
{
memset(vis, 0, sizeof(vis));
for(int i = 1;i <= n; i++)
d[i] = dist[i][1];
for(int i = 1; i <= n; i++)
{
int x;
double minn = inf;
for(int j = 1; j <= n; j++)
{
if(!vis[j] && d[j] < minn)
{
x = j;
minn = d[j];
}
}
vis[x] = 1;
for(int j = 1; j <= n; j++)
d[j] = min(d[j], max(d[x], dist[x][j])); //dis[j]为从一号石头到第j号石头所有通路中最长边中的最小边
}
return d[2];
} int main()
{
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
int cnt = 0;
while(scanf("%d", &n) && n)
{
for(int i = 1; i <= n; i++)
scanf("%d %d", &x[i], &y[i]);
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(i == j)
dist[i][j] = 0;
else
dist[i][j] = sqrt(double(x[i] - x[j])*(x[i] - x[j]) + double(y[i] - y[j])*(y[i] - y[j]));
}
}
printf("Scenario #%d\n", ++cnt);
printf("Frog Distance = ");
printf("%.3lf\n\n",solve());
}
}

利用floyd算法:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef long double ld;
const int inf = 0x3f3f3f3f;
const int maxn = 200 + 10; int n;
double x[maxn], y[maxn];
double dist[maxn][maxn];
void Floyd()
{
for(int k = 1; k <= n; k++)
{
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
dist[i][j] = min(dist[i][j], max(dist[i][k], dist[k][j]));
}
}
} int main()
{
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
int cnt = 0;
while(cin >> n && n)
{
for(int i = 1; i <= n; i++)
cin >> x[i] >> y[i];
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(i == j)
dist[i][j] = 0;
else
dist[i][j] = sqrt((x[i] - x[j])*(x[i] - x[j]) + (y[i] - y[j])*(y[i] - y[j]));
}
}
Floyd();
cout << "Scenario #" << ++cnt << endl;
cout << "Frog Distance = " ;
cout << fixed << setprecision(3) << min(dist[1][2], dist[2][1]) << endl << endl; } }

类似题目

Frogger POJ - 2253(求两个石头之间”所有通路中最长边中“的最小边)的更多相关文章

  1. js 求两个日期之间相差天数

    //求两个日期之间的相差天数 function daysBetween(DateOne, DateTwo) { var OneMonth = DateOne.substring(5, DateOne. ...

  2. PHP 求两个日期之间相差的天数、月数

    <?php /** * 求两个日期之间相差的天数 * (针对1970年1月1日之后,求之前可以采用泰勒公式) * @param string $day1 * @param string $day ...

  3. CCF(地铁修建):向前星+dijikstra+求a到b所有路径中最长边中的最小值

    地铁修建 201703-4 这题就是最短路的一种变形,不是求两点之间的最短路,而是求所有路径中的最长边的最小值. 这里还是使用d数组,但是定义不同了,这里的d[i]就是表示从起点到i的路径中最长边中的 ...

  4. JavaScript求两个数字之间所有数字的和

    这是在fcc上的中级算法中的第一题,拉出来的原因并不是因为有什么好说的,而是我刚看时以为是求两个数字的和, 很显然错了.我感觉自己的文字理解能力被严重鄙视了- -.故拉出来折腾折腾. 要求: 给你一个 ...

  5. AJPFX:求两个城市之间的距离

    键盘录入多个城市: 城市1,城市2,城市3  以 ### 结束输出然后再键盘录入各个城市之间的距离:  格式如下:0,12,4512,0,2245,22,0### 然后按照输入的两个城市,求得两个城市 ...

  6. kuangbin专题专题四 Frogger POJ - 2253

    题目链接:https://vjudge.net/problem/POJ-2253 思路: 从一号到二号石头的所有路线中,每条路线中都个子选出该路线中两点通路的最长距离,并在这些选出的最长距离选出最短路 ...

  7. floyd类型题UVa-10099-The Tourist Guide +Frogger POJ - 2253

    The Tourist Guide Mr. G. works as a tourist guide. His current assignment is to take some tourists f ...

  8. Frogger - poj 2253 (Dijkstra)

      Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28802   Accepted: 9353 Description Fr ...

  9. 设计一个Mypoint类,求两个点之间的距离

    package Test; public class test6 { public static void main(String[] args) { // TODO Auto-generated m ...

随机推荐

  1. 如何在SpringMVC项目中部署WebService服务并打包生成客户端

    场景 某SpringMVC项目原本为一个HTTP的WEB服务项目,之后想在该项目中添加WebService支持,使该项目同时提供HTTP服务和WebService服务.其中WebService服务通过 ...

  2. 软件自动化测试 selenium IDE + Firebug + python脚本

    按顺序步骤来 一.安装软件   1.1.1 webDriver(就是selenium IDE) 解析:本来这两个东西就合成一个了,但是更新到后来,安装的时候又独立安装的.    安装  Python  ...

  3. 2019-10-24-dotnet-列表-Linq-的-Take-用法

    title author date CreateTime categories dotnet 列表 Linq 的 Take 用法 lindexi 2019-10-24 9:4:23 +0800 201 ...

  4. 【git】Git回退代码到指定版本

    1. 查看所有的历史版本,获取你git的某个历史版本的id, git log2. 回退本地代码库:git reset --hard ID3. 推送到远程服务器:git push -f -u origi ...

  5. H3C 端口绑定典型配置举例

  6. linux 内存区

    GFP_DMA 和 GFP_HIGHMEM 都有一个平台相关的角色, 尽管对所有平台它们的使用都 有效. Linux 内核知道最少 3 个内存区: DMA-能够 内存, 普通内存, 和高端内存. 尽管 ...

  7. HTML是什么?

    HTML,即超文本标记语言,它不是一种编程语言,而是一种标记语言,是网页制作所必备的.“超文本”就是指页面内可以包含图片.链接,甚至音乐.程序等非文字元素.超文本标记语言的结构包括“头”部分.和“主体 ...

  8. 【37.48%】【hdu 2587】How far away ?(3篇文章,3种做法,LCA之树上倍增)

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  9. koa2--05.koa-bodyparser中间件的使用,处理post数据

    首先在项目文件夹下使用cmd,输入: npm install --save koa-bodyparser //koa koa-bodyparser中间件的使用 --post提交数据 const koa ...

  10. koa2入门--03.koa中间件以及中间件执行流程

    //中间件:先访问app的中间件的执行顺序类似嵌套函数,由外到内,再由内到外 //应用级中间件 const koa = require('koa'); var router = require('ko ...