「题解」「CF1103B」Game with modulo
简易中文题目
猜一个数字 \(a\),而你可以向机器提问一对 \((x,y)\) ,如果 \(x\bmod a\ge y \bmod a\) 机器返回字符串 x,反之返回字符串 y 。
询问不能超过 \(60\) 次,请你猜出 \(a\) 。
解析
一道十分巧妙的数学题+交互题(人生第二道交互题)。
考虑我们询问的数对是 \((x,2x)\) ,那么就有:
- \(a>2x\) ,那么 \(x\bmod a < 2x\bmod a\)
- \(x< a \le 2x\) ,那么 \(2x\bmod a=2x-a\) ,又因为 \(x< a\) 那么 \(x\bmod a > 2x\bmod a\)
- \(a\le x\) ,无法分析。
发现第三种情况无法分析,怎么办?
尽可能从小开始枚举 \(x\) ,这样就尽可能避免 \(a\le x\) 的情况发生。
考虑从 \(x=1,2x=2\) 开始枚举,如果过程返回 y ,那么我们枚举小了,继续扩大 \(x\),反之说明 \(x< a\le 2x\) ,在这个区间之内做二分即可。
但是我们怎么枚举 \(x\) 呢?其实有多种方法,这里我推荐使用倍增 因为它的时间复杂度好算 。
即 \(x\) 按照 \(1,2,4,8,16\ldots\) 枚举,这样可以在 \(\log a\) 的时间内求出 \(a\) 的大致范围。
但是由于我们的 \(x\) 是从 \(1\) 开始枚举的,而 \(1\le x\) 属于第三种情况,我们无法处理,所以需要特判 \(1\) 。
另外,如果是使用 printf() 的大佬需要在每一次输出之后用 fflush(stdout) 清空一下输出缓冲区的东西,不然会出现玄学错误。
剩下的就是代码实现了。
代码
切莫直接 copy ,他好,你也好[手动滑稽]。
#include<cstdio>
#include<cstring>
#define rep(i,__l,__r) for(signed i=__l,i##_end_=__r;i<=i##_end_;++i)
#define fep(i,__l,__r) for(signed i=__l,i##_end_=__r;i>=i##_end_;--i)
#define writc(a,b) fwrit(a),putchar(b)
#define mp(a,b) make_pair(a,b)
#define ft first
#define sd second
#define LL long long
#define ull unsigned long long
#define uint unsigned int
#define pii pair< int,int >
#define Endl putchar('\n')
// #define FILEOI
#define int long long
// #define int unsigned
#ifdef FILEOI
# define MAXBUFFERSIZE 500000
inline char fgetc(){
static char buf[MAXBUFFERSIZE+5],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXBUFFERSIZE,stdin),p1==p2)?EOF:*p1++;
}
# undef MAXBUFFERSIZE
# define cg (c=fgetc())
#else
# define cg (c=getchar())
#endif
template<class T>inline void qread(T& x){
char c;bool f=0;
while(cg<'0'||'9'<c)f|=(c=='-');
for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
if(f)x=-x;
}
inline int qread(){
int x=0;char c;bool f=0;
while(cg<'0'||'9'<c)f|=(c=='-');
for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
return f?-x:x;
}
// template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}
inline int gcd(const int a,const int b){return b?gcd(b,a%b):a;}
inline void getInv(int inv[],const int lim,const int MOD){
inv[0]=inv[1]=1;for(int i=2;i<=lim;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
}
template<class T>void fwrit(const T x){
if(x<0)return (void)(putchar('-'),fwrit(-x));
if(x>9)fwrit(x/10);
putchar(x%10^48);
}
inline LL mulMod(const LL a,const LL b,const LL mod){//long long multiplie_mod
return ((a*b-(LL)((long double)a/mod*b+1e-8)*mod)%mod+mod)%mod;
}
const int MAXA=1e9;
char s[105],res[105];
int l,r,mid;
inline bool Compare(const char a[],const char b[]){
int la=strlen(a),lb=strlen(b);
if(la^lb)return false;
rep(i,0,la-1)if(a[i]!=b[i])return false;
return true;
}
inline bool Ask(const int x,const int y){
printf("? %lld %lld\n",x,y);fflush(stdout);
scanf("%s",res);
return res[0]=='x';
}
signed main(){
#ifdef FILEOI
freopen("file.in","r",stdin);
freopen("file.out","w",stdout);
#endif
while(233333){
scanf("%s",s);if(Compare(s,"end"))break;
//特判 1
if(Ask(0,1)){
printf("! 1\n");fflush(stdout);
continue;
}
for(int i=1;i<=MAXA;i<<=1)if(Ask(i,Min(i<<1,MAXA<<1))){
l=i,r=Min(i<<1,MAXA<<1);
break;
}
while(l+1<r){
mid=(l+r)>>1;
if(Ask(l,mid))r=mid;
else l=mid;
}
printf("! %lld\n",r);fflush(stdout);
}
return 0;
}
「题解」「CF1103B」Game with modulo的更多相关文章
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 「题解」「HNOI2013」切糕
文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
- 【题解】「P6832」[Cnoi2020]子弦
[题解]「P6832」[Cnoi2020]子弦第一次写月赛题解( 首先第一眼看到这题,怎么感觉要用 \(\texttt{SAM}\) 什么高科技的?结果一仔细读题,简单模拟即可. 我们不难想出,出现最 ...
- 「题解报告」 P3167 [CQOI2014]通配符匹配
「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...
- 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp
「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...
- 「bzoj1925」「Sdoi2010」地精部落 (计数型dp)
「bzoj1925」「Sdoi2010」地精部落---------------------------------------------------------------------------- ...
- 「BZOJ1924」「SDOI2010」 所驼门王的宝藏 tarjan + dp(DAG 最长路)
「BZOJ1924」[SDOI2010] 所驼门王的宝藏 tarjan + dp(DAG 最长路) -------------------------------------------------- ...
- 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie
题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1≤r1<l2≤r2≤N,x⨁yx\bigoplus yx⨁y 表示 ...
随机推荐
- Python 函数 初学者笔记
定义函数 def greet_user(username):#定义一个名为greet_user的函数,username时个形参 print("Hello!" + usernam ...
- 从Windows10中彻底删除【3D对象】文件夹
Remove "3D object" folder from My Computer Windows Registry Editor Version 5.00 [-HKEY_LOC ...
- [P5665][CSP2019D2T2] 划分
先说说部分分做法吧 1.\(n \leq 10\) 指数级瞎草都可以2333 2.\(n \leq 50\) 好像并没有什么做法-也许给剪枝的人部分分吧 3.\(n \leq 400\) 这个复杂度是 ...
- XMind快捷键汇总
在 XMind: ZEN 中,快捷键是可以大大提高绘图效率的存在.掌握常用的快捷键组合,就可以在键盘上运指如飞,快速地进行思维导图的绘制.还在等什么?感兴趣的朋友,下面就和小编一起来看看吧! XMin ...
- aspose插入图片
当使用以下代码插入图片时 int iIndex = sheet.Pictures.Add(x, y, PicturePath); Aspose.Cells.Drawing.Picture pic = ...
- JavaDay10(上)
Java learning_Day10(上) 本人学习视频用的是马士兵的,也在这里献上 <链接:https://pan.baidu.com/s/1qKNGJNh0GgvlJnitTJGqgA&g ...
- 全网VIP视频解析接口
全网VIP视频在线解析可以免费观看[腾讯vip视频.爱奇艺vip视频.优酷VIP视频.土豆VIP视频.乐视VIP视频.芒果VIP视频]等等...可以vip免费观看.去广告等等. https vip视频 ...
- 【HTML】html5 canvas全屏烟花动画特效
<!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...
- 在Scala中免费验证
优锐课带你详细了解如何在Scala中实施免费的monad验证.抽丝剥茧,细说架构那些事! 由于业务数据的复杂性,已经在数据验证上花费了很多精力.在Scala中,提出了使用应用程序进行验证的方法,并被广 ...
- 虚拟机floppy0
网上搜索方法是:删除该虚拟机的软盘即可. 具体原因还不知道,以后再补上原因