题目描述

给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数。如果有多组解,则输出使得最后一个数最小的同时,字典序最大的解(即先要满足最后一个数最小;如果有多组解,则使得第一个数尽量大;如果仍有多组解,则使得第二个数尽量大,依次类推……)。

输入输出格式

输入格式:

共一行,为初始的数字。

输出格式:

共一行,为拆分之后的数列。每个数之间用逗号分隔。行尾无逗号。

输入输出样例

输入样例#1:

[1]
3456
[2]
3546
[3]
3526
[4]
0001
[5]
100000101
输出样例#1:

[1]
3,4,5,6
[2]
35,46
[3]
3,5,26
[4]
0001
[5]
100,000101

说明

【题目来源】

lzn改编

【数据范围】

对于10%的数据,输入长度<=5

对于30%的数据,输入长度<=15

对于50%的数据,输入长度<=50

对于100%的数据,输入长度<=500


《拆分数列》解题报告

By lzn 动态规划常规题。

第一步先求出最后的那个数最小为多少。(为了叙述方便,记T(i,j)表示从原数列下标i取到j的数字组成的数。)只需正向dp一次,dp1[i]表示前i个数字分成任意多个递增数且最后的数最小时,最后的数为T(dp1[i],i)。则dp1[i]=max(j),(T(dp1[j-1],j-1)<T(j,i))。

第二步要求最后一个数确定的情况下,前面的数字按字典序尽量大的解。类似上面的方法反向动归一次即可。

算法复杂度o(l^3)。由于数据大部分为随机,实际运行效率接近l^2。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
using namespace std; const int maxn=; string str;
int a[maxn],n,dP[maxn],Dp[maxn]; bool cmp(int l1,int r1,int l2,int r2){
while(l1<=r1&&a[l1]==) l1++;
while(l2<=r2&&a[l2]==) l2++;
int le1=r1-l1+,le2=r2-l2+;
if(le1==||le2==) return ;
if(le1!=le2) return le1<le2;
for(int i=;i<le1;i++)
if(a[l1+i]!=a[l2+i]) return a[l1+i]<a[l2+i];
return ;
} //dP[i]=max(j),(T(dP[j-1],j-1)<T(j,i))
void DP1(){
for(int i=;i<=n;i++){
dP[i]=;
for(int j=i;j;j--)
if(cmp(dP[j-],j-,j,i)){
dP[i]=j;
break;
}
// printf("dP[%d] = %d\n",i,dP[i]);
}
} //Dp[i]=max(j) (T(i,j)<T(j+1,f[j+1]))
void DP2(){
Dp[dP[n]]=n;
for(int i=dP[n];a[i-]==;i--) Dp[i-]=n; for(int i=dP[n]-;i;i--){
for(int j=dP[n]-;j>=i;j--)
if(cmp(i,j,j+,Dp[j+])){
Dp[i]=j;
break;
}
// printf("Dp[%d] = %d\n",i,Dp[i]);
}
} void print(int l,int r){
for(int i=l;i<=r;i++)
putchar(a[i]+'');
} void print(){
print(,Dp[]);
int pos=Dp[]+;
while(pos<=n){
putchar(',');
print(pos,Dp[pos]);
pos=Dp[pos]+;
}
} int main(){
cin>>str; n=str.length();
for(int i=;i<n;i++) a[i+]=str[i]-'';
DP1(); DP2();
print();
return ;
}

luoguP1415 拆分数列 [dp]的更多相关文章

  1. [luoguP1415] 拆分数列(DP)

    传送门 t(i,j)表示下标从i到j的数 d[i]表示以i结尾的最小的数的下标 d[i]=max(j) (1<=j<=i && t(d[j-1],j-1)<t(j,i ...

  2. P1415 拆分数列 DP

    传送门: 题意: 将一个数字串分成许多不同的小串,使得这些小串代表的数字严格递增,要求最后一个数字尽可能地小. 然后满足字典序尽可能大. 思路: 由于最后一个数字要尽可能地小,所以先处理出每个数的L[ ...

  3. 洛谷P1415 拆分数列[序列DP 状态 打印]

    题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时 ...

  4. 洛谷 P1415 拆分数列 解题报告

    拆分数列 题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数. 如果有多组解,则输出使得最后一个 ...

  5. 洛谷P1415 拆分数列(dp)

    题目链接:传送门 题目: 题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输 ...

  6. 洛谷P1415 拆分数列

    题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时 ...

  7. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  8. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  9. P1415 拆分数列

    传送门 DP数列长度过大无法枚举,考虑DP设f1[i]储存以第i个字符为结尾时,的最后一个数最小时,这个数的开头的位置(很难想有木有)OK,状态有了,方程想一想就出来了:设$num[i][j]$为数列 ...

随机推荐

  1. 再也不用字符串拼接dom元素了

    <script type="text/html" id="tmp"> <div class="cla"> <u ...

  2. python使用xlrd读取excel数据

    一.安装xlrd 库的安装我这里就不说了.. 二.读取 excel 前提条件:excel文件名称为 excel_data.xlsx 1.打开excelw 文件 workbook = xlrd.open ...

  3. mysql5.7问题:[Note] InnoDB: Waiting for page_cleaner to finish flushing of buffer pool

    在关闭mysql5.7的时候发现问题,一直处于夯住状态 [root@localhost ~]# /etc/init.d/mysqld stop Shutting down MySQL......... ...

  4. 「NOI2016」循环之美(小性质+min_25筛)

    传送门. 题解 感觉这题最难的是第一个结论. x/y首先要互质,然后如果在10进制是纯循环小数,不难想到y不是2.5的倍数就好了. 因为十进制下除以2和5是除得尽的. 必然会多出来的什么东西. 如果是 ...

  5. spark面试问题收集

    spark面试问题 1.spark中的RDD是什么,有哪些特性 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可 ...

  6. docker镜像管理和dockerfile详解(8)

    docker镜像加速 docker-io先到 https://cr.console.aliyun.com/ 注册一下,登录成功后,在控制台,看左侧,有一个加速器按钮,点开找到自己的专属加速链接,我的是 ...

  7. Linux内核知识杂记

    1.内核调试手段 1.printk打印内核状态 2.产生opps时使用GDB查看调用栈 2.内核空间和用户空间区别,通信方式有哪些? Linux简化了分段机制,使得虚拟地址与线性地址总是一致,因此,L ...

  8. git分布式版本控制系统权威指南学习笔记(六):git reset、get stash、git checkout总结

    文章目录 1. 概述 2. 如何把修改暂存起来,留着以后使用? 2.1 使用场景 2.2 git stash 暂存进度 2.3 查看进度 2.4 恢复进度 3. 如何撤销工作区的修改? 4. 如何把暂 ...

  9. normal use for autotools

    1. remove temporary files, only used for test purpose. ls | sed -e rm -rf 2. edit autogen.sh echo &q ...

  10. DQL 数据查询语言 show

    2.show show databases; 查看所有的库 show tables; 查看当前库的所有的表 show tables from database; 查看指定的库下的所有表 show pr ...