在本版本中引入了SPI机制,关于Java的SPI机制与Dubbo的SPI机制在以前的文章中介绍过。

传送门:Dubbo的SPI机制与JDK机制的不同及原理分析

因为设计的RPC框架是基于Spring的,时常会遇到依赖注入问题。Spring中也有SPI机制,但是它有有个缺点,就是在利用SPI机制实例化具体的服务类时,如果具体的服务类中调用其他的bean,就会实例化失败。主要因为该具体的服务类并没有放入到Spring容器中。本项目将有效解决这个问题。

在设计的RPC框架中加入了该机制,来实现不同序列化方式的切换。

Spring的SPI机制

我们知道在SprngBoot中好多的配置和实现都有默认的实现,我们只需要修改部分配置,比如数据库配置,我们只要在配置文件中写上对应的url,username,password就可以使用了。其实他这边用的就是SPI的方式实现的。Spring的SPI机制原理与Java的SPI原理是一致的。

SpringBoot会利用SpringFactoriesLoader加载META-INF/spring.factories文件,从CLASSPATH下的每个Jar包中搜寻所有META-INF/spring.factories配置文件,然后将解析properties文件,找到指定名称的配置后返回。需要注意的是,其实这里不仅仅是会去ClassPath路径下查找,会扫描所有路径下的Jar包,只不过这个文件只会在Classpath下的jar包中。

调用方式:

List<AService> services = SpringFactoriesLoader.loadFactories(AService.class, null);
for (AService service : services) {
service.info();
}

相关源码:

public static <T> List<T> loadFactories(Class<T> factoryClass, @Nullable ClassLoader classLoader) {
Assert.notNull(factoryClass, "'factoryClass' must not be null");
ClassLoader classLoaderToUse = classLoader;
if (classLoaderToUse == null) {
classLoaderToUse = SpringFactoriesLoader.class.getClassLoader();
}
List<String> factoryNames = loadFactoryNames(factoryClass, classLoaderToUse);
if (logger.isTraceEnabled()) {
logger.trace("Loaded [" + factoryClass.getName() + "] names: " + factoryNames);
}
List<T> result = new ArrayList<>(factoryNames.size());
for (String factoryName : factoryNames) {
result.add(instantiateFactory(factoryName, factoryClass, classLoaderToUse));
}
AnnotationAwareOrderComparator.sort(result);
return result;
}
public static final String FACTORIES_RESOURCE_LOCATION = "META-INF/spring.factories";
// spring.factories文件的格式为:key=value1,value2,value3
// 从所有的jar包中找到META-INF/spring.factories文件
// 然后从文件中解析出key=factoryClass类名称的所有value值
public static List<String> loadFactoryNames(Class<?> factoryClass, ClassLoader classLoader) {
String factoryClassName = factoryClass.getName();
// 取得资源文件的URL
Enumeration<URL> urls = (classLoader != null ? classLoader.getResources(FACTORIES_RESOURCE_LOCATION) : ClassLoader.getSystemResources(FACTORIES_RESOURCE_LOCATION));
List<String> result = new ArrayList<String>();
// 遍历所有的URL
while (urls.hasMoreElements()) {
URL url = urls.nextElement();
// 根据资源文件URL解析properties文件,得到对应的一组@Configuration类
Properties properties = PropertiesLoaderUtils.loadProperties(new UrlResource(url));
String factoryClassNames = properties.getProperty(factoryClassName);
// 组装数据,并返回
result.addAll(Arrays.asList(StringUtils.commaDelimitedListToStringArray(factoryClassNames)));
}
return result;
}

改进的SPI机制

该机制有两个缓存变量:

private static final ConcurrentHashMap<Class<?>, Map<String, Class<?>>> cacheClasses= new ConcurrentHashMap<>();
private static final ConcurrentHashMap<Class<?>, Map<String, Object>> cacheIntances = new ConcurrentHashMap<>();

两个Map的key都是扩展服务的接口类的Class对象

cacheClasses的value也是一个Map,这个map的key是定义的扩展名,即META-INF/roadspi/目录下文件中的key,value是具体的扩展类的Class对象。

cacheIntances变量的value也是一个Map,该map的key是定义的扩展名,value是扩展类的具体实例化对象。

该机制的主要逻辑是先获取要实现扩展的接口类Class对象,然后从cacheIntances变量中根据key查找是否有缓存的实例,如果有直接返回。如果没有,然后根据接口类Class对象和key在cacheClasses变量中进行查找具体扩展类的Class对象,如果存在,就直接获取对用的Class对象,然后利用BeanDefinitionBuilder生成bean,并注册到Spring容器中;如果找不到对应的Class对象,则到META-INF/roadspi/扩展接口类全称文件下进行资源加载。

支持自定义的RoadSpi注解,来定义默认的具体服务类实现。

最主要部分实现

 private void createService(Map<String, Object> extensionInstanceMap, Map<String, Class<?>> serviceClass, String serviceName, Class<?> type) {
Class<?> obj = serviceClass.get(serviceName);
if (obj == null) {
log.error("serviceClass is null!");
}
String beanName = obj.getSimpleName().concat(serviceName);
BeanDefinitionBuilder builder = BeanDefinitionBuilder.genericBeanDefinition(obj);
GenericBeanDefinition definition = (GenericBeanDefinition)builder.getRawBeanDefinition();
definition.setAutowireMode(GenericBeanDefinition.AUTOWIRE_BY_NAME);
ConfigurableApplicationContext configurableApplicationContext = (ConfigurableApplicationContext)context;
DefaultListableBeanFactory register = (DefaultListableBeanFactory)configurableApplicationContext.getBeanFactory();
register.registerBeanDefinition(beanName, definition);
extensionInstanceMap.put(serviceName, context.getBean(beanName));
cacheIntances.put(type, extensionInstanceMap);
}

具体详细代码地址:RoadSPI

轻量级RPC设计与实现第四版的更多相关文章

  1. 轻量级RPC设计与实现第三版

    在前两个版本中,每次发起请求一次就新建一个netty的channel连接,如果在高并发情况下就会造成资源的浪费,这时实现异步请求就十分重要,当有多个请求线程时,需要设计一个线程池来进行管理.除此之外, ...

  2. 轻量级RPC设计与实现第五版(最终版)

    在最近一段时间里,通过搜集有关资料加上自己的理解,设计了一款轻量级RPC,起了一个名字lightWeightRPC.它拥有一个RPC常见的基本功能.主要功能和特点如下: 利用Spring实现依赖注入与 ...

  3. 轻量级RPC设计与实现第二版

    在上一个版本中利用netty实现了简单的一对一的RPC,需要手动设置服务地址,限制性较大. 在本文中,利用zookeeper作为服务注册中心,在服务端启动时将本地的服务信息注册到zookeeper中, ...

  4. 轻量级RPC设计与实现第一版

    什么是RPC RPC (Remote Procedure Call Protocol), 远程过程调用,通俗的解释就是:客户端在不知道调用细节的情况下,调用存在于远程计算机上的某个对象,就像调用本地应 ...

  5. 【文章内容来自《Android 应用程序开发权威指南》(第四版)】如何设计兼容的用户界面的一些建议(有删改)

    最近一直在看的一本书是<Android 应用程序开发权威指南>(第四版),十分推荐.书中讲到了一些用户界面设计的规范,对于初学者我认为十分有必要,在这里码给大家,希望对我们都有用. 在我们 ...

  6. 微博轻量级RPC框架Motan

    Motan 是微博技术团队研发的基于 Java 的轻量级 RPC 框架,已在微博内部大规模应用多年,每天稳定支撑微博上亿次的内部调用.Motan 基于微博的高并发和高负载场景优化,成为一套简单.易用. ...

  7. 微博轻量级RPC框架Motan正式开源:支撑千亿调用

    支撑微博千亿调用的轻量级 RPC 框架 Motan 正式开源了,项目地址为https://github.com/weibocom/motan. 微博轻量级RPC框架Motan正式开源 Motan 是微 ...

  8. C# 的轻量级 RPC 框架

    Redola.Rpc 的一个小目标 Redola.Rpc 的一个小目标 Redola.Rpc 的一个小目标:20000 tps. Concurrency level: 8 threads Comple ...

  9. 《Thinking In Java第四版》拾遗

    <Thinking In Java第四版>拾遗 转自我的github(http://katsurakkkk.github.io/2016/05/Thinking-In-Java%E7%AC ...

随机推荐

  1. Codeforces_732_D

    http://codeforces.com/problemset/problem/732/D 二分查找. #include<iostream> #include<cstring> ...

  2. ARTS Week 8

    Dec 16, 2019 ~ Dec 22, 2019 Algorithm Problem 53 Maximum Subarray 最大子数组 题目链接 题目描述:给定一个数组,在所有连续的子数组中, ...

  3. JS中map与forEach的区别

    很多同学可能对于map与forEach的区别不是太了解,今天我们介绍一下JS中的map与forEach方法, 我对map的理解是,这个方法对一个数组arr1中的每一个元素进行遍历(传递给一个数组,参数 ...

  4. Golang-执行go get私有库提示”410 Gone“ 解决办法

    之前没有使用过私有库,今天正好碰到,把解决方法整理一下 错误记录 如果你在用go get 私有库碰到如下类似错误: 解决方法 $ export GO111MODULE=on $ export GOPR ...

  5. 鸭子类型 - Duck Typing

    还是先看定义 duck typing, 鸭子类型是多态(polymorphism)的一种形式.在这种形式中,不管对象属于哪个, 也不管声明的具体接口是什么,只要对象实现了相应的方法,函数就可以在对象上 ...

  6. Cesium案例解析(三)——Camera相机

    目录 1. 概述 2. 实例 2.1. Camera.html 2.2. Camera.js 2.2.1. 飞行至某一点 2.2.2. 飞行至某区域 2.2.3. 两地之间飞行 2.2.4. 设置视图 ...

  7. jenkin docker node 自动化部署配置

    jenkins 安装必须插件 NodeJS Plugin Publish Over SSH 1:新建一个任务,选择构建一个自由风格的软件项目 2:源码管理选择Git 2.1 填写Git项目地址Repo ...

  8. PMP--3. 项目启动过程组

    ####################################################### 从第三章开始,我正式进入项目过程,启动.规划.执行.监控.收尾五大过程组的具体在之后依次 ...

  9. Bash脚本编程学习笔记08:函数

    官方资料:Shell Functions (Bash Reference Manual) 简介 正如我们在<Bash脚本编程学习笔记06:条件结构体>中最后所说的,我们应该把一些可能反复执 ...

  10. python3练习100题——002

    因为特殊原因,昨天没有做题.今天继续- 原题链接:http://www.runoob.com/python/python-exercise-example2.html 题目: 企业发放的奖金根据利润提 ...