本来不打算写了的,,,但是感$jio$理解起来还是有点儿难度的来着,,,$so$还是瞎写点儿趴$QAQ$

$exLucas$主要有三步:

1)唯一分解$mod$并预处理$p^{k}$以内的阶乘

2)计算组合数并计算$p$的个数

3)用$crt$合并答案

$umm$大概具体港下,,,$QAQ$

就首先拆下,$mod=\prod_{i=1}^{m} p_{i}^{c_i}$

然后对组合数,$\binom{n}{m}=\frac{n!}{m!\cdot (n-m)!}$,对每个$p_{i}^{c_i}$做一遍,最后用$crt$就好

具体来说,首先显然考虑的是对$n!$,$m!$,$(n-m)!$质因数分解,但是这儿要注意的是显然$p$的倍数的存在会导致一些乱七八糟的存在,所以对$p$的倍数单独处理下

对每个$p$,首先搞出$n!$,$m!$,$(n-m)!$内分别有多少个$p$的倍数,设数量为$f[i]$,则有$f[i]=f[i/p]+i/p$,听起来有点儿像$Lucas$,,,?大概意会下,就说首先这个范围内会有i/p个,但要注意的是有可能存在麻油被赶尽杀绝的,,,比如,$p^{2}$,$p^{3}$这样儿的,$so$还要继续做下去,就是$f[i/p]$.然后就可以求出,$p$的倍数有$f_{n}-f_{m}-f_{n-m}$个,这个单独快速幂下

然后对于剩下的,因为$x\cdot p+y\equiv y$,所以考虑每$p^c$个分一组,就只要做出一组,剩下的都一样儿,矩阵快速幂就好

最后$crt$合并下就欧克辣

综上,$exLucas$主要需要的就是$exgcd$和$crt$,会了这两个之后再尝试理解下打下代码应该还是麻油太难的$QwQ$

放下练手题,,,

[X]模板(代码戳这儿

[X]方程(写了个题解$w$

[X]古代猪文(代码戳这儿

[X]礼物(代码戳这儿

$tbc.$

($umm$我知道讲得还是不太清楚,,,等有时间$upd$下有条理地梳理下$exLucas$的步骤趴$QwQ$

随机推荐

  1. @NOIP2018 - D1T2@ 货币系统

    目录 @题目描述@ @题解@ @代码@ @题目描述@ 在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为 n.面额 ...

  2. 《C语言深度解剖》学习笔记之预处理

    第3章 预处理 1.下面两行代码都是错的.因为注释先于预处理指令被处理,当这两行被展开成“//……”和“/*……*/”时,注释已处理完毕,所以出现错误 #define BSC // #define B ...

  3. GP-荧光免疫分析仪SDK 协议

    近期,闲来无事,得到一款GP的poct设备研究了下,该设备型号:Getein1100 ,串口进行通信,但是串口连接有所限制,于是找到一款数传模块,将串口转网口,使用pc进行通信抓包分析,如下: 在此可 ...

  4. [***]HZOJ 优美序列

    又是一道神仙题.考试的时候居然打了一个回滚莫队,不知道我咋想的…… 先说一个某OJT80,洛谷T5分的思路(差距有点大): 可以把位置和编号映射一下,区间内最大值和最小值对应的位置,每次更新,直到找到 ...

  5. python 直接if判断和is not None的区别

    tmpName = ''if tmpName: print tmpName #没有输出if tmpName is not None: print tmpName #有输出,是空行

  6. 洛谷 2403 [SDOI2010] 所驼门王的宝藏

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先知”的Alpaca L. Sotomon是这个家族的领袖,外人也称其为“所驼门王”.所驼门王毕生致力于维护家族的安定与和谐, ...

  7. HTML的优化

    HTML的优化 : 1).h标签的使用: 要注意的是,不论任何页面,h1标签只能出现一次,它是当前页面的主标题,权重最高, 所以要慎用 . 一般情况下,如果有关键词的话最好是在h1里面出现. h2是表 ...

  8. 【原生JS】图片预加载之无序预加载

    图片预加载之无序预加载 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset= ...

  9. 洛谷P2486 [SDOI2011]染色 题解 树链剖分+线段树

    题目链接:https://www.luogu.org/problem/P2486 首先这是一道树链剖分+线段树的题. 线段树部分和 codedecision P1112 区间连续段 一模一样,所以我们 ...

  10. Python--day40--全局解释器锁

    1,起一百个线程和起一百个进程所花的时间对比(开启效率的较量): import time from threading import Thread from multiprocessing impor ...