\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\]


\(\Large\mathbf{Solution:}\)
Let
\[\mathcal{S}=\sum^\infty_{n=1}\frac{H_n}{n^42^n}\]
We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.
\[\begin{align*}
&\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=\frac{1}{6}\sum^\infty_{n=1}(-1)^{n-1}H_n\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x
=\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x(1+x)}{\rm d}x\\
=&\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x}{\rm d}x-\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{1+x}{\rm d}x
=\frac{1}{6}\sum^\infty_{n=1}\frac{(-1)^{n-1}}{n}\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x\\
-&\frac{1}{6}\int^2_1\frac{\ln{x}\ln^3(x-1)}{x}{\rm d}x
=\sum^\infty_{n=1}\frac{(-1)^{n}}{n^5}+\int^1_{\frac{1}{2}}\frac{\ln{x}\ln^3(1-x)}{6x}-\int^1_{\frac{1}{2}}\frac{\ln^2{x}\ln^2(1-x)}{2x}{\rm d}x\\+&\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{2x}{\rm d}x-\int^1_{\frac{1}{2}}\frac{\ln^4{x}}{6x}{\rm d}x
=-\frac{15}{16}\zeta(5)+\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4
\end{align*}\]
Starting with the easiest integral,
\[\begin{align*}
\mathcal{I}_4=\frac{1}{30}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_3\),
\[\begin{align*}
\mathcal{I}_3
=&-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\int^1_{\frac{1}{2}}x^{n-1}\ln^3{x}\ {\rm d}x
=-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\frac{\partial^3}{\partial n^3}\left(\frac{1}{n}-\frac{1}{n2^n}\right)\\
=&\sum^\infty_{n=1}\left(\frac{3}{n^5}-\frac{3}{n^52^n}-\frac{3\ln{2}}{n^42^n}-\frac{3\ln^2{2}}{n^32^{n+1}}-\frac{\ln^3{2}}{n^22^{n+1}}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{3}{2}\ln^2{2}\left(\frac{7}{8}\zeta(3)-\frac{\pi^2}{12}\ln{2}+\frac{1}{6}\ln^3{2}\right)\\&-\frac{1}{2}\ln^3{2}\left(\frac{\pi^2}{12}-\frac{1}{2}\ln^2{2}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{21}{16}\zeta(3)\ln^2{2}+\frac{\pi^2}{12}\ln^3{2}
\end{align*}\]
For \(\mathcal{I}_2\),
\[\begin{align*}
\mathcal{I}_2
=&\frac{1}{6}\ln^5{2}+\frac{1}{3}\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=\frac{1}{6}\ln^5{2}-\frac{1}{3}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{n+1}-\frac{1}{(n+1)2^{n+1}}\right)\\
=&\frac{1}{6}\ln^5{2}+\sum^\infty_{n=1}\frac{2H_n}{(n+1)^4}-\sum^\infty_{n=1}\frac{2H_n}{(n+1)^42^{n+1}}-\sum^\infty_{n=1}\frac{2\ln{2}H_n}{(n+1)^32^{n+1}}\\
&-\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{(n+1)^22^{n+1}}-\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{3(n+1)2^{n+1}}\\
=&\frac{1}{6}\ln^5{2}+4\zeta(5)-\frac{\pi^2}{3}\zeta(3)-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{\pi^4}{360}\ln{2}+\frac{1}{4}\zeta(3)\ln^2{2}-\frac{1}{12}\ln^5{2}\\
&-\frac{1}{8}\zeta(3)\ln^2{2}+\frac{1}{6}\ln^5{2}-\frac{1}{6}\ln^5{2}\\
=&-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)+4\zeta(5)-\frac{\pi^4}{360}\ln{2}+\frac{1}{8}\zeta(3)\ln^2{2}-\frac{\pi^2}{3}\zeta(3)+\frac{1}{12}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_1\),
\[\begin{align*}
\mathcal{I}_1
=&\frac{1}{6}\int^{\frac{1}{2}}_0\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=-\frac{1}{6}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{(n+1)2^{n+1}}\right)\\
=&\sum^\infty_{n=1}\frac{H_n}{(n+1)^42^{n+1}}+\sum^\infty_{n=1}\frac{\ln{2}H_n}{(n+1)^32^{n+1}}+\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{2(n+1)^22^{n+1}}+\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{6(n+1)2^{n+1}}\\
=&\mathcal{S}-{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{\pi^4}{720}\ln{2}-\frac{1}{16}\zeta(3)\ln^2{2}+\frac{1}{24}\ln^5{2}
\end{align*}\]
Combining these four integrals as \(\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4\) and \(\displaystyle -\dfrac{15}{16}\zeta(5)\) gives
\[\begin{align*}
\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
But consider \(\displaystyle f(z)=\frac{\pi\csc(\pi z)(\gamma+\psi_0(-z))}{z^4}\). At the positive integers,
\[\sum^\infty_{n=1}{\rm Res}(f,n)=\sum^\infty_{n=1}\operatorname*{Res}_{z=n}\left[\frac{(-1)^n}{z^4(z-n)^2}+\frac{(-1)^nH_n}{z^4(z-n)}\right]=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{4}\zeta(5)\]
At \(z=0\),
\[\begin{align*}
{\rm Res}(f,0)
&=[z^3]\left(\frac{1}{z}+\frac{\pi^2}{6}z+\frac{7\pi^4}{360}z^3\right)\left(\frac{1}{z}-\frac{\pi^2}{6}z-\zeta(3)z^2-\frac{\pi^4}{90}z^3-\zeta(5)z^4\right)\\
&=-\zeta(5)-\frac{\pi^2}{6}\zeta(3)
\end{align*}\]
At the negative integers,
\[\begin{align*}
\sum^\infty_{n=1}{\rm Res}(f,-n)
&=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{16}\zeta(5)
\end{align*}\]
Since the sum of the residues is zero,
\[\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}=-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)\]
Hence,
\[\begin{align*}
-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
This implies that
\[\boxed{\begin{align*}
{\sum^\infty_{n=1}\frac{H_n}{n^42^n}}
{=}&\color{blue}{2{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{1}{32}\zeta(5)+{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{\pi^4}{720}\ln{2}+\frac{1}{2}\zeta(3)\ln^2{2}}\\&\color{blue}{-\frac{\pi^2}{12}\zeta(3)-\frac{\pi^2}{36}\ln^3{2}+\frac{1}{40}\ln^5{2}}
\end{align*}}\]

Euler Sums系列(一)的更多相关文章

  1. Euler Sums系列(六)

    \[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...

  2. Euler Sums系列(五)

    \[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...

  3. Euler Sums系列(四)

    \[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...

  4. Euler Sums系列(三)

    \[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...

  5. Euler Sums系列(二)

    \[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...

  6. xorm -sum 系列方法实例

    求和数据可以使用Sum, SumInt, Sums 和 SumsInt 四个方法,Sums系列方法的参数为struct的指针并且成为查询条件. package main import ( " ...

  7. 一个包含arctan与arctanh的积分

    \[\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\m ...

  8. Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验

    Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...

  9. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

随机推荐

  1. VS2017连接MySQL数据库

    vs默认无法直接连接mysql,需要我们自己配置环境. 1.下载mysql-installer-community-8.0.18.0.msi 下载地址:https://dev.mysql.com/do ...

  2. 解决pycharm创建github工程但push失败的问题

    1.运行git-cmd.exe; 2.d:   cd  工程路径 3.执行命令:git remote set-url origin https://github.com/wawj901124/jmet ...

  3. Supervision meeting notes 2019/11/29

    topic 分支:  1. subgraph/subsequence mining Wang Jin, routine behavior/ motif. Philippe Fournier Viger ...

  4. HTTP状态码的浪漫故事

    小明是一个程序员,经常加班,在一个和尚部门,一个妹子都没有,所以一直单身. 404(Not Found):服务器无法根据客户端的请求找到资源(网页) 过年回家,老爸老妈给门开一条缝,先看看小明身后-- ...

  5. Django框架介绍(二)

    1.MVC框架和MTV框架 MVC全名model view controller,是软件工程中的一种软件架构模式,把软件分为三个基本部分:模型(model).视图(view)和控制器(controll ...

  6. 普及C组第三题(8.12)

    2304. 光芒 (File IO): input:light.in output:light.out 时间限制: 1000 ms  空间限制: 题目: 输入: 输出: 样例输入 5 1 1 0 1 ...

  7. 图像变换 - 霍夫线变换(cvHoughLines2)

    霍夫变换是一种在图像中寻找直线.圆及其他简单形状的方法,霍夫线变换是利用Hough变换在二值图像中找到直线. 利用CV_HOUGH_PROBABILISTIC,对应PPHT(累计概率霍夫变换)?这个算 ...

  8. IIS的部署

    https://blog.csdn.net/miner_k/article/details/69388726 https://blog.csdn.net/miner_k/article/details ...

  9. argmax( )

    argmax是一种函数,是对函数求参数(集合)的函数. 当我们有另一个函数y=f(x)时,若有结果x0= argmax(f(x)),则表示当函数f(x)取x=x0的时候,得到f(x)取值范围的最大值: ...

  10. span标签间距

    最近在做的一个项目里面碰到这么一个问题: <p> <span>块1</span> <span>块2</span> </p> 在“ ...