Euler Sums系列(一)
\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\]
\(\Large\mathbf{Solution:}\)
Let
\[\mathcal{S}=\sum^\infty_{n=1}\frac{H_n}{n^42^n}\]
We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.
\[\begin{align*}
&\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=\frac{1}{6}\sum^\infty_{n=1}(-1)^{n-1}H_n\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x
=\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x(1+x)}{\rm d}x\\
=&\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x}{\rm d}x-\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{1+x}{\rm d}x
=\frac{1}{6}\sum^\infty_{n=1}\frac{(-1)^{n-1}}{n}\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x\\
-&\frac{1}{6}\int^2_1\frac{\ln{x}\ln^3(x-1)}{x}{\rm d}x
=\sum^\infty_{n=1}\frac{(-1)^{n}}{n^5}+\int^1_{\frac{1}{2}}\frac{\ln{x}\ln^3(1-x)}{6x}-\int^1_{\frac{1}{2}}\frac{\ln^2{x}\ln^2(1-x)}{2x}{\rm d}x\\+&\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{2x}{\rm d}x-\int^1_{\frac{1}{2}}\frac{\ln^4{x}}{6x}{\rm d}x
=-\frac{15}{16}\zeta(5)+\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4
\end{align*}\]
Starting with the easiest integral,
\[\begin{align*}
\mathcal{I}_4=\frac{1}{30}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_3\),
\[\begin{align*}
\mathcal{I}_3
=&-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\int^1_{\frac{1}{2}}x^{n-1}\ln^3{x}\ {\rm d}x
=-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\frac{\partial^3}{\partial n^3}\left(\frac{1}{n}-\frac{1}{n2^n}\right)\\
=&\sum^\infty_{n=1}\left(\frac{3}{n^5}-\frac{3}{n^52^n}-\frac{3\ln{2}}{n^42^n}-\frac{3\ln^2{2}}{n^32^{n+1}}-\frac{\ln^3{2}}{n^22^{n+1}}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{3}{2}\ln^2{2}\left(\frac{7}{8}\zeta(3)-\frac{\pi^2}{12}\ln{2}+\frac{1}{6}\ln^3{2}\right)\\&-\frac{1}{2}\ln^3{2}\left(\frac{\pi^2}{12}-\frac{1}{2}\ln^2{2}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{21}{16}\zeta(3)\ln^2{2}+\frac{\pi^2}{12}\ln^3{2}
\end{align*}\]
For \(\mathcal{I}_2\),
\[\begin{align*}
\mathcal{I}_2
=&\frac{1}{6}\ln^5{2}+\frac{1}{3}\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=\frac{1}{6}\ln^5{2}-\frac{1}{3}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{n+1}-\frac{1}{(n+1)2^{n+1}}\right)\\
=&\frac{1}{6}\ln^5{2}+\sum^\infty_{n=1}\frac{2H_n}{(n+1)^4}-\sum^\infty_{n=1}\frac{2H_n}{(n+1)^42^{n+1}}-\sum^\infty_{n=1}\frac{2\ln{2}H_n}{(n+1)^32^{n+1}}\\
&-\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{(n+1)^22^{n+1}}-\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{3(n+1)2^{n+1}}\\
=&\frac{1}{6}\ln^5{2}+4\zeta(5)-\frac{\pi^2}{3}\zeta(3)-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{\pi^4}{360}\ln{2}+\frac{1}{4}\zeta(3)\ln^2{2}-\frac{1}{12}\ln^5{2}\\
&-\frac{1}{8}\zeta(3)\ln^2{2}+\frac{1}{6}\ln^5{2}-\frac{1}{6}\ln^5{2}\\
=&-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)+4\zeta(5)-\frac{\pi^4}{360}\ln{2}+\frac{1}{8}\zeta(3)\ln^2{2}-\frac{\pi^2}{3}\zeta(3)+\frac{1}{12}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_1\),
\[\begin{align*}
\mathcal{I}_1
=&\frac{1}{6}\int^{\frac{1}{2}}_0\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=-\frac{1}{6}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{(n+1)2^{n+1}}\right)\\
=&\sum^\infty_{n=1}\frac{H_n}{(n+1)^42^{n+1}}+\sum^\infty_{n=1}\frac{\ln{2}H_n}{(n+1)^32^{n+1}}+\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{2(n+1)^22^{n+1}}+\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{6(n+1)2^{n+1}}\\
=&\mathcal{S}-{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{\pi^4}{720}\ln{2}-\frac{1}{16}\zeta(3)\ln^2{2}+\frac{1}{24}\ln^5{2}
\end{align*}\]
Combining these four integrals as \(\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4\) and \(\displaystyle -\dfrac{15}{16}\zeta(5)\) gives
\[\begin{align*}
\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
But consider \(\displaystyle f(z)=\frac{\pi\csc(\pi z)(\gamma+\psi_0(-z))}{z^4}\). At the positive integers,
\[\sum^\infty_{n=1}{\rm Res}(f,n)=\sum^\infty_{n=1}\operatorname*{Res}_{z=n}\left[\frac{(-1)^n}{z^4(z-n)^2}+\frac{(-1)^nH_n}{z^4(z-n)}\right]=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{4}\zeta(5)\]
At \(z=0\),
\[\begin{align*}
{\rm Res}(f,0)
&=[z^3]\left(\frac{1}{z}+\frac{\pi^2}{6}z+\frac{7\pi^4}{360}z^3\right)\left(\frac{1}{z}-\frac{\pi^2}{6}z-\zeta(3)z^2-\frac{\pi^4}{90}z^3-\zeta(5)z^4\right)\\
&=-\zeta(5)-\frac{\pi^2}{6}\zeta(3)
\end{align*}\]
At the negative integers,
\[\begin{align*}
\sum^\infty_{n=1}{\rm Res}(f,-n)
&=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{16}\zeta(5)
\end{align*}\]
Since the sum of the residues is zero,
\[\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}=-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)\]
Hence,
\[\begin{align*}
-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
This implies that
\[\boxed{\begin{align*}
{\sum^\infty_{n=1}\frac{H_n}{n^42^n}}
{=}&\color{blue}{2{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{1}{32}\zeta(5)+{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{\pi^4}{720}\ln{2}+\frac{1}{2}\zeta(3)\ln^2{2}}\\&\color{blue}{-\frac{\pi^2}{12}\zeta(3)-\frac{\pi^2}{36}\ln^3{2}+\frac{1}{40}\ln^5{2}}
\end{align*}}\]
Euler Sums系列(一)的更多相关文章
- Euler Sums系列(六)
\[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...
- Euler Sums系列(五)
\[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...
- Euler Sums系列(四)
\[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...
- Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...
- Euler Sums系列(二)
\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...
- xorm -sum 系列方法实例
求和数据可以使用Sum, SumInt, Sums 和 SumsInt 四个方法,Sums系列方法的参数为struct的指针并且成为查询条件. package main import ( " ...
- 一个包含arctan与arctanh的积分
\[\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\m ...
- Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
随机推荐
- Java中数字的格式化输出
Java中数字的格式化输出 double d = 345.678; String s = "hello!"; int i = 1234; //"%"表示进行格式 ...
- 题解 洛谷 P4145 【上帝造题的七分钟2 / 花神游历各国】
题目 上帝造题的七分钟2 / 花神游历各国 题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. ...
- 最近手机价格全线暴跌真的只是因为5G要来了吗?
等等党,是一群数量颇大的消费群体.他们的消费习性是绝不买刚上市的新品,而是一直等.等到他们认为产品的价格已经跌无可跌,或者性价比十足的时候再出手.不得不说,与早买早享受的尝鲜消费群体相比,等等党代表了 ...
- C语言-字符串典型问题分析
1.典型问题一 下面的程序输出什么为什么? #include <stdio.h> int main() { ] = {}; char src[] = ...
- python pymysql 基本使用
from pymysql import * # 1.创建连接数据库 conn = connect(host="localhost", port=3306, user="r ...
- mediasoup-demo解析-服务端
1.启动server npm start启动服务,会执行脚本: "start": "DEBUG=${DEBUG:='*mediasoup* *INFO* *WARN* * ...
- SaltStack自动化软件简介及安装
==================================================================================================== ...
- SpringBoot整合mybatis使用pageHelper插件进行分页操作
SpringBoot整合mybatis分页操作 SpringBoot整合Mybatis进行分页操作,这里需要使用Mybatis的分页插件:pageHelper, 关于pageHelper的介绍,请查看 ...
- openshift3.10集群部署
简介 openshift是基于k8s的开源容器云. 要求 系统环境:CentOS 7.5 搭建一个master节点,两个node节点 注意: openshift3 依赖docker的版本为1.13.1 ...
- js的undefined和null
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...