\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\]


\(\Large\mathbf{Solution:}\)
Let
\[\mathcal{S}=\sum^\infty_{n=1}\frac{H_n}{n^42^n}\]
We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.
\[\begin{align*}
&\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=\frac{1}{6}\sum^\infty_{n=1}(-1)^{n-1}H_n\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x
=\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x(1+x)}{\rm d}x\\
=&\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x}{\rm d}x-\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{1+x}{\rm d}x
=\frac{1}{6}\sum^\infty_{n=1}\frac{(-1)^{n-1}}{n}\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x\\
-&\frac{1}{6}\int^2_1\frac{\ln{x}\ln^3(x-1)}{x}{\rm d}x
=\sum^\infty_{n=1}\frac{(-1)^{n}}{n^5}+\int^1_{\frac{1}{2}}\frac{\ln{x}\ln^3(1-x)}{6x}-\int^1_{\frac{1}{2}}\frac{\ln^2{x}\ln^2(1-x)}{2x}{\rm d}x\\+&\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{2x}{\rm d}x-\int^1_{\frac{1}{2}}\frac{\ln^4{x}}{6x}{\rm d}x
=-\frac{15}{16}\zeta(5)+\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4
\end{align*}\]
Starting with the easiest integral,
\[\begin{align*}
\mathcal{I}_4=\frac{1}{30}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_3\),
\[\begin{align*}
\mathcal{I}_3
=&-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\int^1_{\frac{1}{2}}x^{n-1}\ln^3{x}\ {\rm d}x
=-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\frac{\partial^3}{\partial n^3}\left(\frac{1}{n}-\frac{1}{n2^n}\right)\\
=&\sum^\infty_{n=1}\left(\frac{3}{n^5}-\frac{3}{n^52^n}-\frac{3\ln{2}}{n^42^n}-\frac{3\ln^2{2}}{n^32^{n+1}}-\frac{\ln^3{2}}{n^22^{n+1}}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{3}{2}\ln^2{2}\left(\frac{7}{8}\zeta(3)-\frac{\pi^2}{12}\ln{2}+\frac{1}{6}\ln^3{2}\right)\\&-\frac{1}{2}\ln^3{2}\left(\frac{\pi^2}{12}-\frac{1}{2}\ln^2{2}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{21}{16}\zeta(3)\ln^2{2}+\frac{\pi^2}{12}\ln^3{2}
\end{align*}\]
For \(\mathcal{I}_2\),
\[\begin{align*}
\mathcal{I}_2
=&\frac{1}{6}\ln^5{2}+\frac{1}{3}\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=\frac{1}{6}\ln^5{2}-\frac{1}{3}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{n+1}-\frac{1}{(n+1)2^{n+1}}\right)\\
=&\frac{1}{6}\ln^5{2}+\sum^\infty_{n=1}\frac{2H_n}{(n+1)^4}-\sum^\infty_{n=1}\frac{2H_n}{(n+1)^42^{n+1}}-\sum^\infty_{n=1}\frac{2\ln{2}H_n}{(n+1)^32^{n+1}}\\
&-\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{(n+1)^22^{n+1}}-\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{3(n+1)2^{n+1}}\\
=&\frac{1}{6}\ln^5{2}+4\zeta(5)-\frac{\pi^2}{3}\zeta(3)-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{\pi^4}{360}\ln{2}+\frac{1}{4}\zeta(3)\ln^2{2}-\frac{1}{12}\ln^5{2}\\
&-\frac{1}{8}\zeta(3)\ln^2{2}+\frac{1}{6}\ln^5{2}-\frac{1}{6}\ln^5{2}\\
=&-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)+4\zeta(5)-\frac{\pi^4}{360}\ln{2}+\frac{1}{8}\zeta(3)\ln^2{2}-\frac{\pi^2}{3}\zeta(3)+\frac{1}{12}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_1\),
\[\begin{align*}
\mathcal{I}_1
=&\frac{1}{6}\int^{\frac{1}{2}}_0\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=-\frac{1}{6}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{(n+1)2^{n+1}}\right)\\
=&\sum^\infty_{n=1}\frac{H_n}{(n+1)^42^{n+1}}+\sum^\infty_{n=1}\frac{\ln{2}H_n}{(n+1)^32^{n+1}}+\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{2(n+1)^22^{n+1}}+\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{6(n+1)2^{n+1}}\\
=&\mathcal{S}-{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{\pi^4}{720}\ln{2}-\frac{1}{16}\zeta(3)\ln^2{2}+\frac{1}{24}\ln^5{2}
\end{align*}\]
Combining these four integrals as \(\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4\) and \(\displaystyle -\dfrac{15}{16}\zeta(5)\) gives
\[\begin{align*}
\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
But consider \(\displaystyle f(z)=\frac{\pi\csc(\pi z)(\gamma+\psi_0(-z))}{z^4}\). At the positive integers,
\[\sum^\infty_{n=1}{\rm Res}(f,n)=\sum^\infty_{n=1}\operatorname*{Res}_{z=n}\left[\frac{(-1)^n}{z^4(z-n)^2}+\frac{(-1)^nH_n}{z^4(z-n)}\right]=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{4}\zeta(5)\]
At \(z=0\),
\[\begin{align*}
{\rm Res}(f,0)
&=[z^3]\left(\frac{1}{z}+\frac{\pi^2}{6}z+\frac{7\pi^4}{360}z^3\right)\left(\frac{1}{z}-\frac{\pi^2}{6}z-\zeta(3)z^2-\frac{\pi^4}{90}z^3-\zeta(5)z^4\right)\\
&=-\zeta(5)-\frac{\pi^2}{6}\zeta(3)
\end{align*}\]
At the negative integers,
\[\begin{align*}
\sum^\infty_{n=1}{\rm Res}(f,-n)
&=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{16}\zeta(5)
\end{align*}\]
Since the sum of the residues is zero,
\[\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}=-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)\]
Hence,
\[\begin{align*}
-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
This implies that
\[\boxed{\begin{align*}
{\sum^\infty_{n=1}\frac{H_n}{n^42^n}}
{=}&\color{blue}{2{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{1}{32}\zeta(5)+{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{\pi^4}{720}\ln{2}+\frac{1}{2}\zeta(3)\ln^2{2}}\\&\color{blue}{-\frac{\pi^2}{12}\zeta(3)-\frac{\pi^2}{36}\ln^3{2}+\frac{1}{40}\ln^5{2}}
\end{align*}}\]

Euler Sums系列(一)的更多相关文章

  1. Euler Sums系列(六)

    \[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...

  2. Euler Sums系列(五)

    \[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...

  3. Euler Sums系列(四)

    \[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...

  4. Euler Sums系列(三)

    \[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...

  5. Euler Sums系列(二)

    \[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...

  6. xorm -sum 系列方法实例

    求和数据可以使用Sum, SumInt, Sums 和 SumsInt 四个方法,Sums系列方法的参数为struct的指针并且成为查询条件. package main import ( " ...

  7. 一个包含arctan与arctanh的积分

    \[\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\m ...

  8. Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验

    Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...

  9. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

随机推荐

  1. OpenShift 4.3环境中创建基于Go的Operator

    详细步骤可以参考官方文档 https://docs.openshift.com/container-platform/4.3/operators/operator_sdk/osdk-getting-s ...

  2. Java 散列集笔记

    散列表 散列表(hash table)为每个对象计算一个整数,称为散列码(hash code). 若需要自定义类,就要负责实现这个类的hashCode方法.注意自己实现的hashCode方法应该与eq ...

  3. eclipse的一些使用

    1.恢复默认视图 window->perspective->open perspective ->open java 2.打开其他的一些视图,比如server(tomcat,目前使用 ...

  4. ASP.NET Core Web API中Startup的使用技巧

    Startup类和服务配置   STARTUP CLASS AND THE SERVICE CONFIGURATION 在 Startup 类中,有两个方法:ConfigureServices 是用于 ...

  5. Java-POJ1014-Dividing

    多重背包问题的特点是物品数量可以大于1但是有限制.状态定义与01背包一致. 多重背包的解法有多种,复杂度也各不相同. 对于物品数Ci较大的数据,可以采取二进制数进行优化(就是这样,别问就是baidu! ...

  6. codeforces Codeforces Round #597 (Div. 2) Constanze's Machine 斐波拉契数列的应用

    #include<bits/stdc++.h> using namespace std; ]; ]; ; int main() { dp[] = ; scanf(); ); ; i< ...

  7. 每天进步一点点------Allegro 布线完成后如何修改线宽

    一.如果要改变整个一条导线的宽度 1.在find栏里选择Cline; 2.在PCB中选择要改的导线,点击右键,选择Change Width    3.在对话框中输入你想要的线宽 3.如果要改变整个导线 ...

  8. django入门(一)

    小白一枚,老是感觉自己学了点什么东西马上就忘了,所以打算写点下来,以后可以看看,也希望能给以后点进来的人有一些帮助 本文是django的入门,现在在学,有错误之处还希望能包涵和指出,谢谢! 首先先下载 ...

  9. Unity手机端手势基本操作

    主要有单指移动3D物体.单指旋转3D物体.双指缩放3D物体. 基类 using UnityEngine; using System.Collections; /// <summary> / ...

  10. 95. 不同的二叉搜索树 II、96. 不同的二叉搜索树

    95 Tg:递归 这题不能算DP吧,就是递归 一个问题:每次的树都要新建,不能共用一个根节点,否则下次遍历对根左右子树的改动会把已经放进结果数组中的树改掉.. class Solution: def ...