PAT甲级——1146 Topological Order (25分)
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
3 4
第一次写拓扑序列的题目:
柳婼的解法,带我自己的注解的版本~
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n,m,k,a,b,in[1010],flag = 0;
vector<int> v[1010]; //定义二维数组v[1010][]
scanf("%d %d", &n, &m);
for(int i = 0; i < m; i++) //m 行边关系
{
scanf("%d %d",&a ,&b); //使用scanf存储边关系
v[a].push_back(b); //将便关系写入vector数组v[1010][]中
in[b]++; //入度数组加1
}
scanf("%d",&k); //接下来是k个拓扑序列
for(int i= 0;i < k; i++)
{
int judge = 1; //首先预设是正确的序列
vector<int> tin(in, in+n+1); //使用vector tin 复制入度序列 in[]
for(int j = 0;j < n;j++) //
{
scanf("%d", &a); //输入需要测试的顶点
if (tin[a] != 0) judge = 0; //如果入度不为0 ,则为假
for (int it : v[a]) tin[it]--; //将该点对应的入度减去1 ;其实是遍历v[a][]这一行的序列
}
if (judge == 1) continue;
printf("%s%d", flag == 1 ? " ": "", i);
flag = 1;
}
return 0;
}
PAT甲级——1146 Topological Order (25分)的更多相关文章
- PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)
1146 Topological Order (25 分) This is a problem given in the Graduate Entrance Exam in 2018: Which ...
- PAT 甲级 1146 Topological Order
https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...
- PAT 甲级 1020 Tree Traversals (25分)(后序中序链表建树,求层序)***重点复习
1020 Tree Traversals (25分) Suppose that all the keys in a binary tree are distinct positive intege ...
- PAT 甲级 1059 Prime Factors (25 分) ((新学)快速质因数分解,注意1=1)
1059 Prime Factors (25 分) Given any positive integer N, you are supposed to find all of its prime ...
- PAT 甲级 1051 Pop Sequence (25 分)(模拟栈,较简单)
1051 Pop Sequence (25 分) Given a stack which can keep M numbers at most. Push N numbers in the ord ...
- PAT 甲级 1028 List Sorting (25 分)(排序,简单题)
1028 List Sorting (25 分) Excel can sort records according to any column. Now you are supposed to i ...
- PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)
1021 Deepest Root (25 分) A graph which is connected and acyclic can be considered a tree. The heig ...
- PAT 甲级 1020 Tree Traversals (25 分)(二叉树已知后序和中序建树求层序)
1020 Tree Traversals (25 分) Suppose that all the keys in a binary tree are distinct positive integ ...
- PAT 甲级 1016 Phone Bills (25 分) (结构体排序,模拟题,巧妙算时间,坑点太多,debug了好久)
1016 Phone Bills (25 分) A long-distance telephone company charges its customers by the following r ...
随机推荐
- Django中出现no such table: django_session
这个错误跟Session的机制有关, 既然要从Web服务器端来记录用户信息, 那么一定要有存放用户session id对应信息的地方才行. 所以,我们需要创建django_session表. Djan ...
- poj 3262 Protecting the Flowers 贪心 牛吃花
Protecting the Flowers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11402 Accepted ...
- Codeforces Round #616 (Div. 2)
地址:http://codeforces.com/contest/1291 A题就不写解析了,就是给一个数,是不是本身满足这个条件或者删除某些数字来达到这个条件:奇数,各个位上的数字加起来是偶数. # ...
- Arduino -- functions
For controlling the Arduino board and performing computations. Digital I/O digitalRead() digitalWrit ...
- 颜色设置 <color name="white">#FFFFFF</color><!--白色 -->
<?xml version="1.0" encoding="utf-8"?> <resources> <color name=&q ...
- buildroot经验
1.可以运行bulilroot下面的孙可编写的build.sh文件,自动配置和编译 2.如何添加要下载和编译的包? 如要下载和编译libevent, 可以通过make menuconfig, 然后搜索 ...
- POJ-3629 模拟
A - Card Stacking Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u S ...
- 关于torch.norm函数的笔记
先看一下它的参数: norm(p='fro', dim=None, keepdim=False, dtype=None) p: the order of norm. 一般来说指定 $p = 1, 2$ ...
- aced六类股票问题
一.状态转移框架 在我们刷题的过程中,很多同学肯定会遇到股票问题这类题目,股票问题有很多种类型,大多数同学都知道要用动态规划去做,但是往往写不对状态转移方程,我刚接触这类问题时也是一头雾水,但是掌握了 ...
- ACWING基础算法(三)
双指针算法. 相向双指针,指的是在算法的一开始,两根指针分别位于数组/字符串的两端,并相向行走. ACWING 的一道裸题(不知道为啥进不去404):最长连续不重复子序列 输入 5 1 2 2 3 5 ...