This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

    

Sample Output:

3 4

第一次写拓扑序列的题目:

柳婼的解法,带我自己的注解的版本~

#include <iostream>
#include <vector>

using namespace std;

int main() {
    int n,m,k,a,b,in[1010],flag = 0;
    vector<int> v[1010]; //定义二维数组v[1010][]
    scanf("%d %d", &n, &m);
    for(int i = 0; i < m; i++) //m 行边关系
    {
        scanf("%d %d",&a ,&b); //使用scanf存储边关系
        v[a].push_back(b); //将便关系写入vector数组v[1010][]中
        in[b]++; //入度数组加1
    }
    scanf("%d",&k); //接下来是k个拓扑序列
    for(int i=  0;i < k; i++)
    {
        int judge = 1;  //首先预设是正确的序列
        vector<int> tin(in, in+n+1); //使用vector tin 复制入度序列 in[]
        for(int j = 0;j < n;j++) //
        {
            scanf("%d", &a);  //输入需要测试的顶点
            if (tin[a] != 0) judge = 0; //如果入度不为0 ,则为假
            for (int it : v[a]) tin[it]--;  //将该点对应的入度减去1 ;其实是遍历v[a][]这一行的序列
        }
        if (judge == 1) continue;
        printf("%s%d", flag == 1 ? " ": "", i);
        flag = 1;
    }
    return 0;
}

PAT甲级——1146 Topological Order (25分)的更多相关文章

  1. PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

    1146 Topological Order (25 分)   This is a problem given in the Graduate Entrance Exam in 2018: Which ...

  2. PAT 甲级 1146 Topological Order

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...

  3. PAT 甲级 1020 Tree Traversals (25分)(后序中序链表建树,求层序)***重点复习

    1020 Tree Traversals (25分)   Suppose that all the keys in a binary tree are distinct positive intege ...

  4. PAT 甲级 1059 Prime Factors (25 分) ((新学)快速质因数分解,注意1=1)

    1059 Prime Factors (25 分)   Given any positive integer N, you are supposed to find all of its prime ...

  5. PAT 甲级 1051 Pop Sequence (25 分)(模拟栈,较简单)

    1051 Pop Sequence (25 分)   Given a stack which can keep M numbers at most. Push N numbers in the ord ...

  6. PAT 甲级 1028 List Sorting (25 分)(排序,简单题)

    1028 List Sorting (25 分)   Excel can sort records according to any column. Now you are supposed to i ...

  7. PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)

    1021 Deepest Root (25 分)   A graph which is connected and acyclic can be considered a tree. The heig ...

  8. PAT 甲级 1020 Tree Traversals (25 分)(二叉树已知后序和中序建树求层序)

    1020 Tree Traversals (25 分)   Suppose that all the keys in a binary tree are distinct positive integ ...

  9. PAT 甲级 1016 Phone Bills (25 分) (结构体排序,模拟题,巧妙算时间,坑点太多,debug了好久)

    1016 Phone Bills (25 分)   A long-distance telephone company charges its customers by the following r ...

随机推荐

  1. Django中出现no such table: django_session

    这个错误跟Session的机制有关, 既然要从Web服务器端来记录用户信息, 那么一定要有存放用户session id对应信息的地方才行. 所以,我们需要创建django_session表. Djan ...

  2. poj 3262 Protecting the Flowers 贪心 牛吃花

    Protecting the Flowers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11402   Accepted ...

  3. Codeforces Round #616 (Div. 2)

    地址:http://codeforces.com/contest/1291 A题就不写解析了,就是给一个数,是不是本身满足这个条件或者删除某些数字来达到这个条件:奇数,各个位上的数字加起来是偶数. # ...

  4. Arduino -- functions

    For controlling the Arduino board and performing computations. Digital I/O digitalRead() digitalWrit ...

  5. 颜色设置 <color name="white">#FFFFFF</color><!--白色 -->

    <?xml version="1.0" encoding="utf-8"?> <resources> <color name=&q ...

  6. buildroot经验

    1.可以运行bulilroot下面的孙可编写的build.sh文件,自动配置和编译 2.如何添加要下载和编译的包? 如要下载和编译libevent, 可以通过make menuconfig, 然后搜索 ...

  7. POJ-3629 模拟

    A - Card Stacking Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u S ...

  8. 关于torch.norm函数的笔记

    先看一下它的参数: norm(p='fro', dim=None, keepdim=False, dtype=None) p: the order of norm. 一般来说指定 $p = 1, 2$ ...

  9. aced六类股票问题

    一.状态转移框架 在我们刷题的过程中,很多同学肯定会遇到股票问题这类题目,股票问题有很多种类型,大多数同学都知道要用动态规划去做,但是往往写不对状态转移方程,我刚接触这类问题时也是一头雾水,但是掌握了 ...

  10. ACWING基础算法(三)

    双指针算法. 相向双指针,指的是在算法的一开始,两根指针分别位于数组/字符串的两端,并相向行走. ACWING 的一道裸题(不知道为啥进不去404):最长连续不重复子序列 输入 5 1 2 2 3 5 ...