This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21
85
789
0

Sample Output

21 0
85 5
789 62 思路:打表求出H-prime,再两两相乘,用树状数组优化求和问题即可
typedef long long LL;
typedef pair<LL, LL> PLL; const int maxm = 1e6+; bool prime[maxm];
int vis[maxm];
int jud[maxm], siz = , C[maxm]; void add(int x, int val) {
for(; x < maxm; x += lowbit(x))
C[x] += val;
} LL getsum(int x) {
LL ret = ;
for(; x; x -= lowbit(x))
ret += C[x];
return ret;
} void getHprime() {
for(int i = ; i < maxm; i += ) {
if(!prime[i]) {
for(int j = *i; j < maxm; j += i)
prime[j] = true;
jud[siz++] = i;
for(int k = ; k < siz; ++k) {
if(maxm / i >= jud[k]) {
if(!vis[jud[k] * i]++)
add(i*jud[k], );
} else
break;
} }
} } int main() {
getHprime();
int n;
while(scanf("%d", &n) && n) {
printf("%d %lld\n", n, getsum(n));
}
return ;
}
												

Day7 - I - Semi-prime H-numbers POJ - 3292的更多相关文章

  1. 【POJ 3292】 Semi-prime H-numbers

    [POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...

  2. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  3. Day7 - J - Raising Modulo Numbers POJ - 1995

    People are different. Some secretly read magazines full of interesting girls' pictures, others creat ...

  4. Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)

    题意:给一个数 可以写出多少种  连续素数的合 思路:直接线性筛 筛素数 暴力找就行   (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net ...

  5. Greedy:Sum of Consecutive Prime Numbers(POJ 2739)

     素数之和 题目大意:一些整数可以表示成一个连续素数之和,给定一个整数要你找出可以表示这一个整数的连续整数序列的个数 方法:打表,然后用游标卡尺法即可 #include <iostream> ...

  6. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

  7. POJ 3292 Semi-prime H-numbers

    类似素数筛... Semi-prime H-numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6873 Accept ...

  8. POJ 3292

    Semi-prime H-numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7059   Accepted: 3 ...

  9. Prime Path(poj 3126)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

随机推荐

  1. DC: 8-Write-up

    下载地址:点我 哔哩哔哩:点我 信息收集 确定网段,找到虚拟机的IP,扫端口和服务. ➜ ~ nmap -sn 192.168.116.1/24 Starting Nmap 7.80 ( https: ...

  2. 文本输入框UITextField和UITextView

    本文概要 1.简介 2.介绍TextField控件 3.介绍TextView控件 4.键盘的打开和关闭 5.关闭和大开键盘的通知 6.键盘的种类 详情 1.简介 与Label一样,TextField和 ...

  3. 装有Ubuntu的硬盘插入到电脑中无法进入

    前言 前段时间,由于自己作死,将BIOS的CPU电压设置解锁,导致BIOS芯片烧坏.在将电脑返厂维修后,我把装有Ubuntu18.04系统的固态硬盘插入到电脑中,但是电脑无法进入grub,采取任何方法 ...

  4. 5 HTML脚本&字符实体&URL

    HTML脚本: 用<script>标签定义客户端脚本,比如JavaScript script元素即可包含脚本语句,也可以通过src属性指向外部脚本文件 JavaScript常用于图片操作. ...

  5. Tomcat服务更新流程:

    Tomcat服务更新流程: 1.把需要更新的war包放在服务器/servers/tomcat9/update下.2.负载均衡服务上把要更新的服务器权重值调为0,即服务不转在这台要更新的服务器上.(重要 ...

  6. kafka 日志策略

    日志查看: usr/local/kafka/kafka_2.11-2.4.0/bin/kafka-run-class.sh kafka.tools.DumpLogSegments --files /t ...

  7. 用instsrv.exe+srvany.exe将应用程序安装为windows服务

    下载 链接:https://pan.baidu.com/s/1gKu_WwVo-TeWXmrGAr9qjw 提取码:s1vm 用instsrv.exe安装srvany.exe 将instsrv.exe ...

  8. 重识线段树——Let's start with the start.

    声明 本文为 Clouder 原创,在未经许可情况下请不要随意转载.原文链接 前言 一般地,这篇文章是给学习过线段树却仍不透彻者撰写的,因此在某些简单的操作上可能会一笔带过. 当然了,入门线段树后也可 ...

  9. eslint检测规则中,括弧和函数名之间去掉空格的配置

    在.eslintrc.js中配置: // add your custom rules here rules: { // no space before function name "spac ...

  10. Java中小数精度问题

    代码如下:主要是利用java中写好的DecimalFormat类进行设置(#,0,%) import java.text.DecimalFormat; import java.util.Arrays; ...