PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]
题目
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the lef and right subtrees must also be binary search trees. If we swap the lef and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST. Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first print in a line “YES” if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or “NO” if not. Then if the answer is “YES”, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input 1:
7
8 6 5 7 10 8 11
Sample Output 1:
YES
5 7 6 8 11 10 8
Sample Input 2:
7
8 10 11 8 6 7 5
Sample Output 2:
YES
11 8 10 7 5 6 8
Sample Input 3:
7
8 6 8 5 10 9 11
Sample Output 3:
NO
题目分析
已知二叉查找树节点序列,判断是其前序序列还是其镜像树的前序序列,并打印相应树的后序序列
解题思路
思路 01
- 输入测试数据时,分别建树和建镜像树
- 先用树的先序序列与原测试序列对比,若同即输出YES,若不同再用镜像树先序序列对比,若同输出YES,不同则NO
- 若为YES,打印相应后序序列
思路 02(最优、难理解)
- 输入测试数据时,建树
- 根据二叉查找树的性质(大于所有左子树节点,小于所有右子树节点)
2.1 获取后序序列,若后序序列中的结点数与原测试用例结点数相同,即为二叉查找树的先序序列打印YES,若不同,清空,并进性镜像树的后序序列获取
2.2 获取镜像树的后序序列结点数,若与原测试用例结点数相同,即为二叉查找树镜像树的先序序列YES,若不同,打印NO - 若为YES,打印相应后序序列
知识点
二叉查找树的前序转后序,无需建树,可根据其性质(大于所有左子树节点,小于所有右子树节点)建树
如前序序列:8 6 5 7 10 8 11
8是根节点
左子树:从6开始往后找小于8的都为8的左子树节点
右子树:从最后一位11开始往前找大于8的都为8的右子树节点
继续递归过程,直到完成建树
Code
Code 01
#include <iostream>
#include <vector>
using namespace std;
struct node {
int data;
node * left=NULL;
node * right=NULL;
node() {}
node(int _data):data(_data) {}
};
node * root,* rootM;
void insert(int n, int b) {
if(root==NULL&&b==0) {
root = new node(n);
return;
}
if(rootM==NULL&&b==1) {
rootM = new node(n);
return;
}
node * p;
if(b==0)p=root;
else p=rootM;
while(p!=NULL) {
if((n<p->data&&b==0)||(n>=p->data&&b==1)) {
if(p->left==NULL) {
p->left=new node(n);
return;
}
p=p->left;
} else if((n>=p->data&&b==0)||(n<p->data&&b==1)) {
if(p->right==NULL) {
p->right=new node(n);
return;
}
p=p->right;
}
}
}
vector<int> origin,pre,post,preM,postM;
void preOrder(node * nd, int b) {
if(nd==NULL)return;
if(b==0)pre.push_back(nd->data);
else preM.push_back(nd->data);
preOrder(nd->left,b);
preOrder(nd->right,b);
}
void postOrder(node * nd, int b) {
if(nd==NULL)return;
postOrder(nd->left,b);
postOrder(nd->right,b);
if(b==0)post.push_back(nd->data);
else postM.push_back(nd->data);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
origin.push_back(m);
insert(m,0);
insert(m,1);
}
// int flag = -1;//0 前序;1 镜像前序;2 NO
preOrder(root,0);
preOrder(rootM,1);
if(pre==origin) {
postOrder(root,0);
printf("YES\n");
for(int i=0; i<post.size(); i++) {
if(i!=0)printf(" ");
printf("%d",post[i]);
}
} else if(preM==origin) {
if(preM==origin) {
postOrder(rootM,1);
printf("YES\n");
for(int i=0; i<postM.size(); i++) {
if(i!=0)printf(" ");
printf("%d",postM[i]);
}
}
}else{
printf("NO\n");
}
return 0;
}
Code 02(最优、难理解)
#include <iostream>
#include <vector>
using namespace std;
vector<int> pre,post;
bool isMirror;
void getPost(int root, int tail) {
if(root>tail)return;
int i=root+1;
int j=tail;
if(!isMirror) {
while(i<=tail&&pre[i]<pre[root])i++;
while(j>root&&pre[j]>=pre[root])j--;
} else {
while(i<=tail&&pre[i]>=pre[root])i++;
while(j>root&&pre[j]<pre[root])j--;
}
if(i-j!=1)return;
getPost(root+1,j);//左子树
getPost(i,tail); //右子树
post.push_back(pre[root]);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
pre.push_back(m);
}
getPost(0,n-1);
if(post.size()!=n) {
isMirror=true;
post.clear();
getPost(0,n-1);
}
if(post.size()==n) {
printf("YES\n%d",post[0]);
for(int i=1; i<post.size(); i++) {
printf(" %d",post[i]);
}
} else {
printf("NO\n");
}
return 0;
}
PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]的更多相关文章
- PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题
1043 Is It a Binary Search Tree (25 分) A Binary Search Tree (BST) is recursively defined as a bina ...
- 【PAT】1043 Is It a Binary Search Tree(25 分)
1043 Is It a Binary Search Tree(25 分) A Binary Search Tree (BST) is recursively defined as a binary ...
- PAT 甲级 1043 Is It a Binary Search Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...
- PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- 1043 Is It a Binary Search Tree (25分)(树的插入)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- PAT (Advanced Level) 1043. Is It a Binary Search Tree (25)
简单题.构造出二叉搜索树,然后check一下. #include<stdio.h> #include<algorithm> using namespace std; +; st ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
随机推荐
- ①spring简介以及环境搭建(一)
注*(IOC:控制反转.AOP:面向切面编程) spring官网:http://spring.io/ spring简介: spring是一个开源框架 spring为简化企业级应用开发而生,使用Spri ...
- Vue+Axios+Nigix+SpringCloud前端和后端搭建及其碰到的问题
一.Axios.Router的安装和使用 1.如何安装Axios和Router 1).进入到工程所在的文件夹,通过cmd指令,进入到window的dos界面 2).输入:npm install axi ...
- js 跳转链接
1.跳转链接 在当前窗口打开 window.location.href="http://www.baidu.com" 等价于 <a href="baidu.com& ...
- POJ 1905:Expanding Rods 求函数的二分
Expanding Rods Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 13780 Accepted: 3563 D ...
- Oracle 序列(查询序列的值,修改序列的值)
1.序列的语法形式 create sequence 序列名 increment by n start with n maxvalue n | nomaxvalue minvalue n | nomin ...
- SpringBoot#Download
_amaze! 如果不使用fastdfs等分布式的文件存储,有时候还是需要上传文件到web应用所在的服务器的磁盘上,下载文件.下面是一个小demo,关于如何用控制器进行上传和下载. - @PostMa ...
- 使用NlohmannJson写JSON保留插入顺序
1. 正文 nlohmann/json是一个C++的读写JSON的组件,号称使用现代C++范式写的.简单看了一下,这个组件确实包含了很多cpp11以上的特性,在vs2015及一下的版本甚至没办法正常编 ...
- 六十四、SAP中的内表的9种定义方式
一.内表一共有9种定义方式,如下: 二.执行如下 *&--------------------------------------------------------------------- ...
- 第二阶段scrum-9
1.整个团队的任务量: 2.任务看板: 会议照片: 产品状态: 消息收发在制作
- Node.js NPM 介绍
章节 Node.js NPM 介绍 Node.js NPM 作用 Node.js NPM 包(Package) Node.js NPM 管理包 Node.js NPM Package.json NPM ...