Facebook 发布了一个全新的多任务学习框架 Pythia,它基于 PyTorch 且可用于视觉和语言的联合任务。Pythia 是一种模块化的即插即用框架,数据科学家和机器学习开发者能快速构建、复现和构建基准模型。

项目地址:https://github.com/facebookresearch/pythia

Pythia 是个啥?

Pythia 是一个深度学习框架,它支持视觉和语言领域的多任务处理。该框架搭建于开源的 PyTorch之上,其模块化、即插即用的设计使得研究者可以迅速构建模型。Pythia 是为视觉和语言任务设计的,如与视觉数据相关的问答和自动生成图像注释。

Pythia 不但支持分布式训练及多种数据集,同时还支持自定义的损失函数、度量标准、调度和最优化器等。Pythia 还提供了常用的视觉和语言层级模块,它们都支持分布式训练。Pythia 另一个特点是内建了很多语料库,包括 VQA、VizWiz、TextVQA 和 VisualDialog,它们可以用于多任务学习,即 Pythia 能同时在多个语料训练单一多任务模型。

总体而言,Pythia 的特性主要有以下几点:

  • Model Zoo:SoTA 视觉和语言模型的推理实现,包括 LoRRA(VQA 和 TextVQA 的 SoTA)、Pythia 模型(VQA 2018 挑战赛冠军)和 BAN。
  • 多任务:支持多任务,允许在多个数据集上同时训练。
  • 数据集:包括对多种数据集内置的支持,有 VQA、VizWiz、TextVQA 和 VisualDialog。
  • 模块:提供对视觉和语言领域中多个常用层的实现。
  • 分布式:支持基于 DataParallel 和 DistributedDataParallel 的分布式训练。
  • 非指定:不指定构建在其上的数据集和模型实现。
  • 定制化:定制损失函数、度量标准、调度、最优化器、TensorBoard,满足所有定制化需求。

Pythia 有啥用?

Pythia 包含了 Facebook 在最近的 AI 竞赛(VQA 2018 挑战赛和 Vizwiz 2018 挑战赛)中获胜的元素。特征包括推理实现,以展示之前的 SOTA 模型如何达到相关基准结果并快速评估新模型。除了多任务,Pythia 还支持分布式训练、一系列数据集以及定制损失函数、度量、调度和优化器。

  • Pythia 官方文档:https://learnpythia.readthedocs.io/en/latest/

我们可以使用 Pythia 完成视觉和语言多模态研究项目,如下图所示为视觉问答,它同时需要学习图像和文本相关的知识。

Pythia 怎么用?

Pythia 的安装非常简单,各种依赖项也都会自动安装:

# Clone Pythia repository
git clone https://github.com/facebookresearch/pythia ~/pythia # Install dependencies and setup
cd ~/pythia
python setup.py develop
  1. 获取数据

Pythia 目前支持的数据集要求有两部分,即特征和 ImDB。例如,对于 TextVQA,我们需要下载如下数据和预训练权重。

cd ~/pythia;
# Create data folder
mkdir -p data && cd data; # Download and extract the features
wget https://dl.fbaipublicfiles.com/pythia/features/open_images.tar.gz
tar xf open_images.tar.gz # Get vocabularies
wget http://dl.fbaipublicfiles.com/pythia/data/vocab.tar.gz
tar xf vocab.tar.gz # Download detectron weights required by some models
wget http://dl.fbaipublicfiles.com/pythia/data/detectron_weights.tar.gz
tar xf detectron_weights.tar.gz # Download and extract ImDB
mkdir -p imdb && cd imdb
wget https://dl.fbaipublicfiles.com/pythia/data/imdb/textvqa_0.5.tar.gz
tar xf textvqa_0.5.tar.gz
  1. 训练

下载数据后就可以直接训练了:

cd ~/pythia;
python tools/run.py --tasks vqa --datasets textvqa --model lorra --config *\*
configs/vqa/textvqa/lorra.yml
  1. 推断

如果需要运行推断或生成预测,我们可以下载对应的预训练模型,并运行以下命令行:

cd ~/pythia/data
mkdir -p models && cd models; wget https://dl.fbaipublicfiles.com/pythia/pretrained_models/textvqa/lorra_best.pthcd ../.. python tools/run.py --tasks vqa --datasets textvqa --model lorra --config *\*
configs/vqa/textvqa/lorra.yml --resume_file data/models/lorra_best.pth *\*
--evalai_inference 1 --run_type inference
  • 完整的示例可以在 colab 上查看:https://colab.research.google.com/drive/1Z9fsh10rFtgWe4uy8nvU4mQmqdokdIRR

Pythia 有何重要之处

Pythia 使得进入不断发展中的视觉和语言子领域这一过程变得更加平滑,可以让研究人员专注于更快的原型和实验。Facebook 的目标是通过提高这些模型和结果的复现性来加速进程。如此一来,社区就能更容易地构建成功的系统,并对其进行基准测试。

Facebook 希望,在移除一些障碍之后,研究者能够更加快速地开发出人类和智能机器交流的新方法。这项工作还应该帮助研究者开发适应性 AI,将多种理解综合成更基于上下文的、多模态的理解。除了本次开源的内容外吗,Facebook 还计划增加一些工具、任务、数据集和参考模型。

Pythia:Facebook最新开源的视觉、语言多任务学习框架的更多相关文章

  1. 牛亚男:基于多Domain多任务学习框架和Transformer,搭建快精排模型

    导读: 本文主要介绍了快手的精排模型实践,包括快手的推荐系统,以及结合快手业务展开的各种模型实战和探索,全文围绕以下几大方面展开: 快手推荐系统 CTR模型--PPNet 多domain多任务学习框架 ...

  2. MMF的初步介绍:一个规范化的视觉-语言多模态任务框架

    在VQA, Image Caption等任务中,构建模型是一件工作量较大的工作.有没有什么能减少这些重复的工作量呢?与此同时,Pytorch,tensorflow等开源的深度学习工具包发布,大大减少了 ...

  3. 开源图形库 c语言-图形图像库 集合[转]

    开源图形库 c语言-图形图像库 集合[转] Google三维API O3D O3D 是一个开源的 Web API 用来在浏览器上创建界面丰富的交互式的 3D 应用程序.这是一种基于网页的可控3D标准. ...

  4. 2013 年 —— Facebook 在开源方面的工作介绍

    自从 Facebook 的第一行PHP代码,第一句 MySQL 的 INSERT 语句,开源就已经是我们工程哲学中的一个重要的部分. 现在,我们使用.维护并为大量的主要项目做出了贡献——涉及多种领域如 ...

  5. 开源的c语言人工神经网络计算库 FANN

    这年头机器学习非常的火,神经网络算是机器学习算法中的比较重要的一种.这段时间我也花了些功夫,学了点皮毛,顺便做点学习笔记. 介绍人工神经网络的基本理论的教科书很多.我正在看的是蒋宗礼教授写的<人 ...

  6. 2014年Facebook的开源成就

    2014是Facebook开源硕果丰硕的一年,其开源项目经理詹姆斯·皮尔斯(James Pearce)连续12天发布开源博客文章展示全年该社交网站在此领域取得的成就. 皮尔斯公布的成就包括以下内容: ...

  7. Facebook 正式开源其大数据查询引擎 Presto

    Facebook 正式宣布开源 Presto —— 数据查询引擎,可对250PB以上的数据进行快速地交互式分析.该项目始于 2012 年秋季开始开发,目前该项目已经在超过 1000 名 Faceboo ...

  8. 直接拿来用!Facebook移动开源项目大合集

    直接拿来用!Facebook移动开源项目大合集 时间:2014-04-22 15:37 作者:唐小引 随着iOS依赖管理工具CocoaPods和大量第三方开源库成熟起来,业界积累了大量的优秀开源项目. ...

  9. 应用于Java中的一个开源的表达式语言(Expression Language)

    OGNL(英文全称:Object Graph Navigation Language,中文名:对象导航图语言)是应用于Java中的一个开源的表达式语言(Expression Language),它被集 ...

随机推荐

  1. 小程序开发顶部TAB栏和侧边分类点击

    先上一个效果图: 根据这个效果图我来说内容. 首先是顶部tab栏 效果实现依靠的是一个组件scroll-view.这个组件很有意思,可以多层嵌套,当然它的属性也很多. 这里主要用的是scroll-x, ...

  2. Django--评论功能实现和用户登录

    1.确定实现评论功能的方式 1.第三方社会化评论插件(有言.多说.网易云跟帖等) 优点:可以直接用,紧急时开发快 缺点:评论存储在第三方,第三方挂了就不弄用 2.Django评论库 django-co ...

  3. 六、JavaScript之调用外部JavaScript文件

    一.外部JavaScript文件,不需要写<SCRIPT>标签,myScript.js代码如下: 二.index.php代码如下 三.运行效果如下 四.点击之后 myScript.php如 ...

  4. 五十二、SAP中的可编辑表格LVC

    一.之前我们写的表格如下,都是通过WRITE输出,不支持同步编辑等操作,给人感觉非常之LOW 二.在SAP中还存在另外一种可编辑的表格,叫LVC表格,效果如下, 三.此可标记表格是座位SAP内置模块来 ...

  5. 046-unset对静态变量无法销毁

    <?php function digui() { static $count = 0; echo $count; $count++; unset($count); } digui(); digu ...

  6. oracle学习笔记(4)

    4.oracle数据库的启动流程 windows操作系统 启动监听: lsnrctl start; 启动数据库实例:oradim-startup-sid 实例名 linux系统 启动监听:lsnrct ...

  7. 【CF1154G】Minimum Possible LCM

    题意 给你 \(n\) 个数 \(a_i\) ,求出 \(\text{lcm}\) 最小的一对数. \(n\le 10^6, a_i\le 10^7\) 题解 直接枚举 ,找到当前数最小的两个倍数,统 ...

  8. 吴裕雄--天生自然C++语言学习笔记:C++ 标准库

    C++ 标准库可以分为两部分: 标准函数库: 这个库是由通用的.独立的.不属于任何类的函数组成的.函数库继承自 C 语言. 面向对象类库: 这个库是类及其相关函数的集合. C++ 标准库包含了所有的 ...

  9. Apache NiFi Processor实战

    1 前言 Apache NiFi是什么?NiFi官网给出如下解释:“一个易用.强大.可靠的数据处理与分发系统”.通俗的来说,即Apache NiFi 是一个易于使用.功能强大而且可靠的数据处理和分发系 ...

  10. Mysql:分支结构—case结构

    case结构 情况一:类似于家擦中的switch语句  一般用于实现等值判断 语法: CASE 变量|表达式|字段 WHEN 要判断的值 THEN 返回的值1或语句1; WHEN 要判断的值 THEN ...