题解 bzoj 4398福慧双修(二进制分组)
二进制分组,算个小技巧
bzoj 4398福慧双修
给一张图,同一条边不同方向权值不同,一条边只能走一次,求从1号点出发再回到1号点的最短路
一开始没注意一条边只能走一次这个限制,打了个从一号点相邻节点为原点的dij,样例就挂了
其实就是要从这个错误思路上改进
对于不与1号点相接的边,权值为正,肯定不会重复走,所以这个条件可以忽略
考虑1号点相邻的点,走出第一步后所在的点,和走回1号点前的那个点不能相同
设这两个点编号为\(i\),\(j\),则\(i\),\(j\)的二进制至少有一位不同
所以用二进制分组其实这个方法也是看来题解之后才知道的,自己想真很难想出来
枚举每个二进制位,虚拟一个源点和汇点,这位为0/1的点分成两组,分别与源/汇点相连,跑两次dij,取\(dis[1]\)的最小值
复杂度高于那种构造新图的方式,bzoj上测的总时间2s+,肯定是倒数,但想起来也能简单一些
code.
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define R register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n,m;
int fir[40006],nex[200006],to[200006],w[200006],tot;
int dui[40006],size;
int dis[40006],in[40006];
inline void push(int x){
dui[size++]=x;
R int i=size-1,fa;
while(i){
fa=i>>1;
if(dis[dui[fa]]<=dis[dui[i]]) return;
std::swap(dui[fa],dui[i]);i=fa;
}
}
inline int pop(){
int ret=dui[0];dui[0]=dui[--size];
R int i=0,ls,rs;
while((i<<1)<size){
ls=i<<1;rs=ls|1;
if(rs<size&&dis[dui[rs]]<dis[dui[ls]]) ls=rs;
if(dis[dui[ls]]>=dis[dui[i]]) break;
std::swap(dui[ls],dui[i]);i=ls;
}
return ret;
}
inline int dij(int bit,int panduan){
std::memset(dis,0x3f,sizeof dis);
for(R int i=fir[1];i;i=nex[i])if((to[i]&bit)==panduan){
push(to[i]);dis[to[i]]=w[i];in[to[i]]=1;
}
while(size){
R int u=pop();in[u]=0;
for(R int i=fir[u];i;i=nex[i]){
R int v=to[i];
if(v==1&&(u&bit)==panduan) continue;
if(dis[v]>dis[u]+w[i]){
dis[v]=dis[u]+w[i];
if(!in[v]) push(v),in[v]=1;
}
}
}
return dis[1];
}
inline void add(int x,int y,int z){
to[++tot]=y;w[tot]=z;
nex[tot]=fir[x];fir[x]=tot;
}
int work(){
R int ret=0x3f3f3f3f;
R int tmp=0;int nn=n;
while(nn) tmp++,nn>>=1;
for(R int i=0;i<tmp;i++)
{ret=std::min(ret,dij(1<<i,1<<i)),ret=std::min(ret,dij(1<<i,0));}
return ret;
}
int main(){
n=read();m=read();
for(R int i=1;i<=m;i++){
int x=read(),y=read(),ww=read(),www=read();
add(x,y,ww);add(y,x,www);
}
R int ret=work();
std::printf("%d",ret==0x3f3f3f3f?-1:ret);
return 0;
}
题解 bzoj 4398福慧双修(二进制分组)的更多相关文章
- bzoj 4398 福慧双修——二进制分组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4398 如果枚举1号点走哪些点出去,就从那些点出发跑多源最短路即可.最短路不会重复经过一条边. ...
- bzoj 4398 福慧双修 —— 二进制分组+多起点最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4398 按二进制每一位是 0/1 把 1 号点的儿子分成两组,分别作为起点和终点跑多起点最短路 ...
- [BZOJ 2989]数列(二进制分组+主席树)
[BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...
- BZOJ 4140 凸包+二进制分组
思路: $(x_0-x)^2+(y_0-y)^2<=x^2+y^2$ $y>=(-x_0/y_0)x+(x_0^2+y_0^2)/2y0$ 这显然就是凸包了 以一个斜率不断向下(上)走 ...
- 【技巧 二进制分组】bzoj4398: 福慧双修&&2407: 探险
二进制分组也可以说是一种比较优美的拆贡献方式吧? Description 菩萨为行,福慧双修,智人得果,不忘其本.——唐朠立<大慈恩寺三藏法师传>有才而知进退,福慧双修,这才难得.——乌雅 ...
- 【BZOJ3821/UOJ46】玄学(二进制分组,线段树)
[BZOJ3821/UOJ46]玄学(二进制分组,线段树) 题面 BZOJ UOJ 题解 呜,很好的题目啊QwQ. 离线做法大概可以线段树分治,或者直接点记录左右两次操作时的结果,两个除一下就可以直接 ...
- 【BZOJ4140】共点圆加强版(二进制分组)
[BZOJ4140]共点圆加强版(二进制分组) 题面 BZOJ 题解 我卡精度卡了一天.... 之前不强制在线的做法是\(CDQ\)分治,维护一个凸壳就好了. 现在改成二进制分组,每次重建凸壳就好了. ...
- 【BZOJ2989】数列(二进制分组,主席树)
[BZOJ2989]数列(二进制分组,主席树) 题面 BZOJ 权限题啊... Description 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即g ...
- 【CF710F】String Set Queries(二进制分组,AC自动机)
[CF710F]String Set Queries(二进制分组,AC自动机) 题面 洛谷 CF 翻译: 你有一个字符集合\(D\),初始为空, 有三种操作: 往\(D\)中加入一个串:从\(D\)中 ...
随机推荐
- Mysql大数据量问题与解决
今日格言:了解了为什么,问题就解决了一半. Mysql 单表适合的最大数据量是多少? 我们说 Mysql 单表适合存储的最大数据量,自然不是说能够存储的最大数据量,如果是说能够存储的最大量,那么,如果 ...
- MODIS系列之NDVI(MOD13Q1)一:数据下载(二)基于FTP
这一篇我们来介绍下MODIS数据的下载方式.当然这边主要是介绍国外网站的下载方式,国内网站的普遍是在地理空间数据云和遥感集市下载.国外网站(NASA官网)下载方式主要介绍两种.本篇主要针对第一种方式, ...
- nginx内置高可用配置与第三方高可用模块nginx_ustream_check_mudule配置
1. nginx 第三方高可用模块 IP 备注 10.0.0.63 proxy 10.0.0.64 web1 10.0.0.65 web2 这里会讲解一些nignx常用高可用方案,以及引入第三方高可用 ...
- Progress笔记
1. iconv -f gbk -t unicode test.tmp > test.csv 如果出现文件数据补全,需要确认在这之前,output是否已经close,如果output to指定了 ...
- 【three.js 第一课】创建场景,显示几何体
<!DOCTYPE html> <html> <head> <title>demo1</title> </head> <s ...
- 关于 System.IO.File.Exists 需要注意的事项
各位: .NET Framework 本省在设计的时候,他对于异常没有完全做到抛出,这样可能会有很多意想不到的问题. 比如 你在asp.net 应用程序中判断文件是否存在,这个文件可能是一个共 ...
- 接口测试中实际发生的几个问题——python中token传递
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:AFKplayer PS:如有需要Python学习资料的小伙伴可以加点 ...
- day8作业
# 一:for循环 # 1.1 for循环嵌套之打印99乘法表 for i in range(1,10): for j in range(1,i+1): print("{} * {} = { ...
- stand up meeting 12/3/2015
part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 初始化弹窗的弹出位置并捕捉弹窗区域内的鼠标控制事件,初步解决弹窗的拖拽功能: 6 UWP对控件的支持各种看不懂,属性 ...
- Cucumber(2)——目录结构以及基本语法
目录 回顾 HelloWorld 扩展 回顾 在上一节中,我大致的介绍了一下cucumber的特点,以及基于ruby和JavaScript下关于cucumber环境的配置,如果你还没有进行相关的了解或 ...