E. Alternating Tree 树点分治|树形DP
题意:给你一颗树,然后这颗树有n*n条路径,a->b和b->a算是一条,然后路径的权值是 vi*(-1)^(i+1) 注意是点有权值。
从上头往下考虑是点分治,从下向上考虑就是树形DP,分成三类路径:1.指定点单点 2.跨过指定点3.没跨过指定点但不是单点
细节要好好打磨一下,然后还是用long long比较稳 ,1LL*还是有点危险.
点分治:
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+;
const int P=1e9+;
vector<int>G[N];
bool vis[N];
int SQ,SO,Q,O,q[N],o[N],rt,m,nq[N],no[N],sz[N],v[N],mx[N],ans;
void dfs(int u,int fa,int S){
sz[u]=mx[u]=;
q[u]=o[u]=no[u]=nq[u]=;
for(int i=;i<(int)G[u].size();++i) {
int v=G[u][i];
if(vis[v]||v==fa) continue;
dfs(v,u,S);
sz[u]+=sz[v];
mx[u]=max(mx[u],sz[v]);
}
mx[u]=max(mx[u],S-sz[u]);
if(m>mx[u]) rt=u,m=mx[u];
}
void solve(int u,int nv,int f,int fa,int last){
int t=(nv+f*v[u])%P;
if(f==-) o[fa]=(o[fa]+t)%P,O=(O+t)%P,++no[fa],++SO;
else q[fa]=(q[fa]+t)%P,Q=(Q+t)%P,++nq[fa],++SQ;
for(int i=;i<(int)G[u].size();++i) {
int v=G[u][i];
if(v==last||vis[v]) continue;
solve(v,t,-f,fa,u);
}
}
int work(int u,int S){
m=1e9+;
dfs(u,,S);
vis[rt]=;
Q=O=SQ=SO=;
for(int i=;i<(int)G[rt].size();++i) if(!vis[G[rt][i]]) solve(G[rt][i],v[rt],-,G[rt][i],rt);
for(int i=;i<(int)G[rt].size();++i) if(!vis[G[rt][i]]){
int t=G[rt][i];
ans=((ans-1LL*no[t]*(O-o[t])%P)%P-1LL*o[t]*(SO-no[t])%P)%P;
ans=(ans+1LL*no[t]*(SO-no[t])%P*v[rt]%P)%P;
ans=((ans+1LL*nq[t]*(Q-q[t])%P)%P+1LL*q[t]*(SQ-nq[t])%P)%P;
ans=(ans-1LL*nq[t]*(SQ-nq[t])%P*v[rt]%P)%P;
ans=(ans+(q[t]<<)%P)%P;
}
ans=((ans+v[rt])%P+P)%P;
int nt=rt;
for(int i=;i<(int)G[nt].size();++i) if(!vis[G[nt][i]])
work(G[nt][i],sz[G[nt][i]]>sz[nt]?S-sz[nt]:sz[G[nt][i]]);
}
int main(){
int n,x,y;
scanf("%d",&n);
for(int i=;i<=n;++i) scanf("%d",v+i);
for(int i=;i<n;++i) {
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
work(,n);
printf("%d\n",(ans+P)%P);
}
树形DP的思路是参考的这里
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+;
const int P=1e9+;
vector<int>G[N];
long long dp[N][],num[N][],ans,v[N];
void dfs(int u,int fa){
for(int i=;i<(int)G[u].size();++i) {
int vt=G[u][i];
if(vt==fa) continue;
dfs(vt,u);
dp[u][]=(((dp[u][]+dp[vt][])%P-1LL*v[u]*num[vt][]%P)%P+P)%P;
dp[u][]=(((dp[u][]+dp[vt][])%P+1LL*v[u]*num[vt][]%P)%P+P)%P;
num[u][]=(num[u][]+num[vt][])%P;
num[u][]=(num[u][]+num[vt][])%P;
}
for(int i=;i<(int)G[u].size();++i) {
int vt=G[u][i];
if(vt==fa) continue;
ans=(ans+2LL*(num[u][]-num[vt][])%P*dp[vt][]%P+1LL*(num[u][]-num[vt][])*v[u]%P*num[vt][]%P)%P;
ans=(ans+2LL*(num[u][]-num[vt][])%P*dp[vt][]%P-1LL*(num[u][]-num[vt][])*v[u]%P*num[vt][]%P)%P;
}
ans=(ans+(dp[u][]<<)%P+v[u])%P;
++num[u][];
num[u][]%=P;
dp[u][]=(dp[u][]+v[u])%P;
}
int main(){
int n,x,y;
scanf("%d",&n);
for(int i=;i<=n;++i) scanf("%lld",v+i);
for(int i=;i<n;++i) {
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(,);
printf("%lld\n",(ans+P)%P);
}
E. Alternating Tree 树点分治|树形DP的更多相关文章
- 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分
树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...
- (中等) HDU 5293 Tree chain problem,树链剖分+树形DP。
Problem Description Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There are ...
- [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP
题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...
- CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。
题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...
- [codeforces161D]Distance in Tree(点分治/树形dp)
题意:求树上距离为k的点对个数: 解题关键:练习一下点分治不用容斥 而直接做的做法.注意先查询,后更新. 不过这个方法有个缺陷,每次以一个新节点为根,必须memset mp数组,或许使用map会好些, ...
- 『You Are Given a Tree 整体分治 树形dp』
You Are Given a Tree Description A tree is an undirected graph with exactly one simple path between ...
- [BZOJ2152]聪聪可可 点分治/树形dp
2152: 聪聪可可 Time Limit: 3 Sec Memory Limit: 259 MB Submit: 3602 Solved: 1858 [Submit][Status][Discu ...
- BZOJ 2152 / Luogu P2634 [国家集训队]聪聪可可 (点分治/树形DP)
题意 一棵树,给定边权,求满足两点之间的路径上权值和为3的倍数的点对数量. 分析 点分治板题,对每个重心求子树下面的到根的距离模3分别为0,1,2的点的个数就行了. O(3nlogn)O(3nlogn ...
- 2014 Super Training #9 E Destroy --树的直径+树形DP
原题: ZOJ 3684 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3684 题意: 给你一棵树,树的根是树的中心(到其 ...
随机推荐
- 非阻塞同步机制和CAS
目录 什么是非阻塞同步 悲观锁和乐观锁 CAS 非阻塞同步机制和CAS 我们知道在java 5之前同步是通过Synchronized关键字来实现的,在java 5之后,java.util.concur ...
- UVALive 7509 Dome and Steles
三分 #include<bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=a;i<=b;++i) #d ...
- 【Linux常见命令】date命令
Linux date命令:可以用来显示或设定系统的日期与时间. 在显示方面,使用者可以设定欲显示的格式,格式设定为一个加号后接数个标记,其中可用的标记列表如下: 时间方面: %H : 小时(00..2 ...
- 三、通过Vue基础属性做一个Table的增加、删除、姓名音位吗查询
html头文件包括css,和vue.js的文件的引用 <!DOCTYPE html> <html lang="en"> <head> <m ...
- CSS开发技巧(三):图片点击缩放
前言 利用CSS实现图片的点击缩放是一个很值得研究的效果.在某些业务需求场景中,我们可能并没有足够的空间展示过大的图片,这就需要限制图片容器的宽度和高度.然而图片限制了宽度,一些图片的细节便又无法看 ...
- 参加Windows7深圳社区发布会
昨天下午参加了深圳DotNet俱乐部组织的Windows7深圳社区发布会. 开场:朱兴林,俱乐部简介及Win7的发布情况 Session 1,万洪,Windows7的新特性 Session 2,张善友 ...
- Ethtool工具源码剖析
Ethtool工具源码剖析 ethool是一个实用的工具,用来给系统管理员以大量的控制网络接口的操作.可以用来控制接口参数,速度,介质类型,双工模式,DMA环设置,硬件校验和,LAN唤醒操作等.本人经 ...
- 关于Python的JSON
1.json模块load/loads.dump/dumps区别:(摘自这里) 实际上json就是python字典的字符串表示,但是字典作为一个复杂对象是无法直接转换成定义它的代码的字符串,python ...
- 在sun jdk 8镜像基础上构建maven 3的docker镜像
2019独角兽企业重金招聘Python工程师标准>>> 在https://my.oschina.net/ytqvip/blog/1595054文章的sun jdk 8镜像基础上构建m ...
- 算法竞赛进阶指南--在单调递增序列a中查找>=x的数中最小的一个(即x或x的后继)
while (l < r) { int mid = (l + r) / 2; if (a[mid] >= x) r = mid; else l = mid + 1; }