题目链接:https://vjudge.net/problem/UVALive-8518

题目大意:

  给定一个长度为 $N$ 的数字序列 $A$,进行 $Q$ 次询问,每次询问 $[L,R]$,需要回答这个区间内的子序列的所有子序列的异或和之和。

  $1 \le N,Q \le 100000$

  $0 \le A[i] \le 1000000$

知识点:  前缀和

解题思路:

  将序列中的每一个数转成二进制(不超过 $20$ 位),逐位考虑。

  根据序列中的数字用二进制表示时在该位上为 $1$ 或 $0$,我们可以用 $20$ 个 $01$ 序列来表示序列 $A$。现在只考虑二进制位中的某一位,其他位做类似处理即可:

  先预处理出异或前缀和 $preXOR$(很明显,它是个 $01$ 序列),用 $zero[][i]$ 和 $one[][i]$ 表示在 $[1,i]$ 这个区间中的 $preXOR$ 有多少个 $0$  和 $1$。然后用 $sum[][i]$ 表示 $[1,i]$ 这个区间的答案。易知 $sum[][i] = sum[][i-1] + (所有以 A[i] 为右边界的子序列对答案的贡献)$,即 $sum[j][i] = sum[j][i-1] + 2^j *(preXOR[j][i]:zero[j][i-1]?one[j][i-1])$,因为只有当左边界的左边一位的异或前缀和和右边界的异或前缀和的异或和为 $1$ 时该区间才对答案有贡献。

  查询 $[L,R]$ 的时候,对于第 $j$ 位,对答案的贡献为:$sum[j][R]-sum[j][L-1]-zero[j][L-2]*(one[j][R]-one[j][L-1])*2^j -one[j][L-2]*(zero[j][R]-zero[j][L-1])*2^j$.

  后半部分其实是减掉那些左边界在 $[1,L-1]$ 而右边界在 $[L,R]$ 的区间对答案的影响,还是一样的道理: 只有当左边界的左边一位的异或前缀和和右边界的异或前缀和的异或和为 $1$ 时该区间才对答案有贡献。

  "为什么是l-2,因为左端点要<=l-1,如果是l-1的话就表示从l开始了。"

AC代码:

 #include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int MAXN=+;
const int MOD=1e9+; int A[MAXN];
int preXOR[][MAXN];
LL sum[][MAXN],zero[][MAXN],one[][MAXN];
int main(){
int T;
scanf("%d",&T);
while(T--){
int N,Q;
scanf("%d%d",&N,&Q);
for(int i=;i<=N;i++) scanf("%d",&A[i]);
for(int i=;i<;i++){
preXOR[i][]=;
one[i][]=,zero[i][]=;
for(int j=;j<=N;j++){
if(A[j]&(<<i))
preXOR[i][j]=preXOR[i][j-]^;
else
preXOR[i][j]=preXOR[i][j-];
one[i][j]=one[i][j-],zero[i][j]=zero[i][j-];
if(preXOR[i][j]) one[i][j]++;
else zero[i][j]++;
}
}
for(int i=,now=;i<;i++,now<<=){
sum[i][]=;
for(int j=;j<=N;j++){
sum[i][j]=sum[i][j-];
if(preXOR[i][j])
sum[i][j]=(sum[i][j]+zero[i][j-]*now)%MOD;
else
sum[i][j]=(sum[i][j]+one[i][j-]*now)%MOD;
}
}
while(Q--){
int L,R;
scanf("%d%d",&L,&R);
LL ans=;
for(int i=,now=;i<;i++,now<<=){
ans=(ans+sum[i][R]-sum[i][L-])%MOD;
if(L>=)
ans=(ans-zero[i][L-]*(one[i][R]-one[i][L-])*now%MOD
-one[i][L-]*(zero[i][R]-zero[i][L-])*now%MOD)%MOD;
}
if(ans<) ans+=MOD;
printf("%lld\n",ans);
}
}
return ;
}

UVALive8518 Sum of xor sum的更多相关文章

  1. HDU 4825 Xor Sum(经典01字典树+贪心)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  2. 字典树-百度之星-Xor Sum

    Xor Sum Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包括了N个正整数,随后 Prometheu ...

  3. HDU 4825 Xor Sum 字典树+位运算

    点击打开链接 Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) ...

  4. 2014百度之星第三题Xor Sum(字典树+异或运算)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  5. Sum of xor

    Sum of xor jdoj-2160 题目大意:给你一个n,求1^2^...^n. 注释:$n<=10^{18}$. 想法:第一道异或的题.先来介绍一下什么是异或.a^b表示分别将两个数变成 ...

  6. Xor Sum 01字典树 hdu4825

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)Total S ...

  7. hdu 4825 Xor Sum (01 Trie)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4825 题面: Xor Sum Time Limit: 2000/1000 MS (Java/Others) ...

  8. HDU--4825 Xor Sum (字典树)

    题目链接:HDU--4825 Xor Sum mmp sb字典树因为数组开的不够大一直wa 不是报的 re!!! 找了一下午bug 草 把每个数转化成二进制存字典树里面 然后尽量取与x这个位置上不相同 ...

  9. hdu 4825 Xor Sum trie树

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Proble ...

随机推荐

  1. html+css的用户注册界面

    注册界面样图 代码实现 html部分 <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  2. 09-5.部署 EFK 插件

    09-5.部署 EFK 插件 EFK 对应的目录:kubernetes/cluster/addons/fluentd-elasticsearch $ cd /opt/k8s/kubernetes/cl ...

  3. from _sqlite3 import * ImportError: DLL load failed: 找不到指定的模块。

    *Error creating Django application: Error on python side. Exit code: 1, err: Traceback (most recent ...

  4. Spark学习笔记(一)

    概念: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架. 支持用scala.java和Python等语言编写应用程序.相较于Hdoop,往往有更好的运行效率. Spark包括了 ...

  5. 通过express框架为前端提供api(数据),妈妈再也不用担心后端不给我数据了~

    个人网站 https://iiter.cn 程序员导航站 开业啦,欢迎各位观众姥爷赏脸参观,如有意见或建议希望能够不吝赐教! 首先,确保自己安装了express框架. 没有安装的同学可以参照下面这篇博 ...

  6. MySQL权限原理及删除MySQL的匿名账户

    MySQL权限系统的工作原理 MySQL权限系统通过下面两个阶段进行认证: (1)对连接的用户进行身份认证,合法的用户通过认证,不合法的用户拒绝连接: (2)对通过认证的合法用户赋予相应的权限,用户可 ...

  7. c/c++头文件的摘抄

    C/C++常用头文件 以及简单应用介绍 C/C++头文件一览 C #include <assert.h> //设定插入点 #include <ctype.h> //字符处理 # ...

  8. RF(页面断言)

    一.RF中断言方式 title should be(断言title与预期指定的title内容相等) Open Browser https://www.baidu.com/ gc Title Shoul ...

  9. 【HBase】协处理器是什么?又能干什么?怎么用?

    目录 简单了解 官方帮助文档 协处理器出现的原因 协处理器的分类 Observer Endpoint Phoenix 协处理器的使用 加载方式 静态加载 动态加载 协处理器的卸载 协处理器Observ ...

  10. Excel非常规快捷键

    Windows+V,调出剪贴板,是常规快捷键,鼠标右键-W-F,新建文件夹,这是非常规快捷键. 掌握Excel大半菜单和三五十快捷键,Excel也算入门了.对Excel快捷键的学习,其一是常规快捷键, ...