【LeetCode】509. 斐波那契数
题目
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
给定 N,计算 F(N)。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1.
示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2.
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3.
提示:
0 ≤ N ≤ 30
思路:动态规划
如果使用递归f[n] = f[n-1] + f[n-2]会有大量重复计算,时间复杂度为O(n^2),使用动态规划使时间复杂度为O(n)。
代码
时间复杂度:O(n)
空间复杂度:O(n)
class Solution {
public:
int fib(int N) {
if (N == 0 || N == 1) {
return N;
}
int f[N+1];
f[0] = 0;
f[1] = 1;
for (int i = 2; i <= N; ++i) {
f[i] = f[i-1] + f[i-2];
}
return f[N];
}
};
优化空间复杂度
因为每个当前值只与前面两个数相关,所以可以利用两个变量优化空间复杂度。
时间复杂度:O(n)
空间复杂度:O(1)
class Solution {
public:
int fib(int N) {
if (N == 0 || N == 1) {
return N;
}
int a = 0, b = 1;
int res = 0;
for (int i = 2; i <= N; ++i) {
res = a + b;
a = b;
b = res;
}
return res;
}
};
【LeetCode】509. 斐波那契数的更多相关文章
- Java实现 LeetCode 509 斐波那契数
509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...
- LeetCode.509——斐波那契数
问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
- leetcode 509. 斐波那契数
问题描述 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
- 力扣(LeetCode) 509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...
- leetcode 509斐波那契数列
递归方法: 时间O(2^n),空间O(logn) class Solution { public: int fib(int N) { ?N:fib(N-)+fib(N-); } }; 递归+记忆化搜索 ...
- LeetCode_509.斐波那契数
LeetCode-cn_509 509.斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) ...
- LeetCode(509. 斐波那数)
问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
- [Swift]LeetCode509. 斐波那契数 | Fibonacci Number
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...
- UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...
随机推荐
- jQuery Validation Engine(二) checkHello data-errormessage
<!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...
- android图片保存到SQLlite如何实现?
//写入数据库 ImageView pic = (ImageView) findViewById(R.id.picture); ...
- coding 321
三大原理(计算机原理.操作系统原理.编译原理)两个协议(TCP与HTTP协议)一种结构(数据结构)
- 让Nutz支持最快的模板引擎Smarty4j
Smarty4j是一个开源的模板引擎.没错,它就是著名的php模板引擎之Java移植版. 它特点就是将模板文件或者字符串编译成java类直接执行,所以效率比一般的模板解释的方式处理要快.它发展较晚,所 ...
- elk基本配置
https://www.cnblogs.com/zsl-find/articles/10730458.html https://www.cnblogs.com/mylovelulu/p/1053000 ...
- AssetBundle打包依赖(宽宽又欠我一顿烧烤)
using UnityEngine; using System.Collections; using UnityEditor; public class dabao : EditorWindow { ...
- JavaScript 空白符(分隔符)
分隔符(空白符)就是各种不可见字符的集合,如空格(\u0020).水平制表符(\u0009).垂直制表符(\u000B).换页符(\u000C).不中断空白(\u00A0).字节序标记(\uFEFF) ...
- Ayoub's function
思维,就是反过来想,题解太强了 #include <bits/stdc++.h> using namespace std; int main() { long long t; cin> ...
- Prometheus Operator【转】
前面我们介绍了 Kubernetes 的两种监控方案 Weave Scope 和 Heapster,它们主要的监控对象是 Node 和 Pod.这些数据对 Kubernetes 运维人员是必须的,但还 ...
- HiBench成长笔记——(11) 分析源码run.sh
#!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributor licen ...