一、查看数据(查看对象的方法对于Series来说同样适用)

1.查看DataFrame前xx行或后xx行
a=DataFrame(data);
a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据。
a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据。

2.查看DataFrame的index,columns以及values
a.index ; a.columns ; a.values 即可

3.describe()函数对于数据的快速统计汇总
a.describe()对每一列数据进行统计,包括计数,均值,std,各个分位数等。

4.对数据的转置
a.T

5.对轴进行排序
a.sort_index(axis=1,ascending=False);
其中axis=1表示对所有的columns进行排序,下面的数也跟着发生移动。后面的ascending=False表示按降序排列,参数缺失时默认升序。

6.对DataFrame中的值排序
a.sort(columns='x')
即对a中的x这一列,从小到大进行排序。注意仅仅是x这一列,而上面的按轴进行排序时会对所有的columns进行操作。

二、选择对象

1.选择特定列和行的数据
a['x'] 那么将会返回columns为x的列,注意这种方式一次只能返回一个列。a.x与a['x']意思一样。

取行数据,通过切片[]来选择
如:a[0:3] 则会返回前三行的数据。

2.loc是通过标签来选择数据
a.loc['one']则会默认表示选取行为'one'的行;

a.loc[:,['a','b'] ] 表示选取所有的行以及columns为a,b的列;

a.loc[['one','two'],['a','b']] 表示选取'one'和'two'这两行以及columns为a,b的列;

a.loc['one','a']与a.loc[['one'],['a']]作用是一样的,不过前者只显示对应的值,而后者会显示对应的行和列标签。

3.iloc则是直接通过位置来选择数据
这与通过标签选择类似
a.iloc[1:2,1:2] 则会显示第一行第一列的数据;(切片后面的值取不到)

a.iloc[1:2] 即后面表示列的值没有时,默认选取行位置为1的数据;

a.iloc[[0,2],[1,2]] 即可以自由选取行位置,和列位置对应的数据。

4.使用条件来选择
使用单独的列来选择数据
a[a.c>0] 表示选择c列中大于0的数据

使用where来选择数据
a[a>0] 表直接选择a中所有大于0的数据

使用isin()选出特定列中包含特定值的行
a1=a.copy()
a1[a1['one'].isin(['2','3'])] 表显示满足条件:列one中的值包含'2','3'的所有行。

三、设置值(赋值)

赋值操作在上述选择操作的基础上直接赋值即可。
例a.loc[:,['a','c']]=9 即将a和c列的所有行中的值设置为9
a.iloc[:,[1,3]]=9 也表示将a和c列的所有行中的值设置为9

同时也依然可以用条件来直接赋值
a[a>0]=-a 表示将a中所有大于0的数转化为负值

四、缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中。

1.reindex()方法
用来对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝。
a.reindex(index=list(a.index)+['five'],columns=list(a.columns)+['d'])

a.reindex(index=['one','five'],columns=list(a.columns)+['d'])

即用index=[]表示对index进行操作,columns表对列进行操作。

** 2.对缺失值进行填充**
a.fillna(value=x)
表示用值为x的数来对缺失值进行填充

** 3.去掉包含缺失值的行**
a.dropna(how='any')
表示去掉所有包含缺失值的行

4.空数据行列的处理:

可以通过axis参数来删除含有空数据的全部列
df4 = df4.dropna(axis=1)

# 可以通过subset参数来删除在age和sex中含有空数据的全部行
df4 = df4.dropna(subset=["age", "sex"])
print(df4)
df4 = df4.dropna(subset=['age', 'body','home.dest'])

五、合并

1.contact
contact(a1,axis=0/1,keys=['xx','xx','xx',...]),其中a1表示要进行进行连接的列表数据,axis=1时表横着对数据进行连接。axis=0或不指定时,表将数据竖着进行连接。a1中要连接的数据有几个则对应几个keys,设置keys是为了在数据连接以后区分每一个原始a1中的数据。

例:a1=[b['a'],b['c']]
result=pd.concat(a1,axis=1,keys=['1','2'])

2.Append 将一行或多行数据连接到一个DataFrame上
a.append(a[2:],ignore_index=True)
表示将a中的第三行以后的数据全部添加到a中,若不指定ignore_index参数,则会把添加的数据的index保留下来,若ignore_index=Ture则会对所有的行重新自动建立索引。

3.merge类似于SQL中的join
设a1,a2为两个dataframe,二者中存在相同的键值,两个对象连接的方式有下面几种:
(1)内连接,pd.merge(a1, a2, on='key')
(2)左连接,pd.merge(a1, a2, on='key', how='left')
(3)右连接,pd.merge(a1, a2, on='key', how='right')
(4)外连接, pd.merge(a1, a2, on='key', how='outer')
至于四者的具体差别,具体学习参考sql中相应的语法。

删除重复行

第一个想法:把所有重复的行去掉

第二个想法:只保留第一次出现的重复行

第三个想法:保留最后一次出现的重复行

这三个想法都可以用pandas中自带一个方法实现。 DataFrame.drop_duplicates()

newdata.drop_duplicates(subset=['A','B','C','D'],keep=False)

上面这一句代码就是把所有重复的行去掉,subset这个参数后面我会提到,keep这个参数就是选择我们前面三个想法中的哪一个?

当keep=False时,就是去掉所有的重复行

当keep=‘first'时,就是保留第一次出现的重复行

当keep='last'时就是保留最后一次出现的重复行。(注意,这里的参数是字符串)

下面讲一下subset这个参数。
在上面的场景中,我们对重复的定义是:在某一行,若A、B、C、D这四列如果都相同的话就是重复。
但是有时候,我们重复并不需要所有列都相同,我们只需要其中的某几列相同就可以当作重复。因此subset这个参数就是来设置这个的。
举个栗子,还是上面这个数据集,如果我们想把A列和B列中元素相同的行去掉,只保留第一次出现的行,要怎么做?

很简单,

newdata.drop_duplicates(subset=['A','B'],keep='first')

从结果上我们可以看到,第0行和第1行由于A列B列相同,而且选择保留第一次出现的行,所以第1行被去掉。
第2行和第5行的A列B列相同,保留第一次出现的行,所以第5行被去掉。

六、分组(groupby)

用pd.date_range函数生成连续指定天数的的日期
pd.date_range('20000101',periods=10)

def shuju():
data={
'date':pd.date_range('20000101',periods=10),
'gender':np.random.randint(0,2,size=10),
'height':np.random.randint(40,50,size=10),
'weight':np.random.randint(150,180,size=10)
}
a=DataFrame(data)
print(a)
date gender height weight
0 2000-01-01 0 47 165
1 2000-01-02 0 46 179
2 2000-01-03 1 48 172
3 2000-01-04 0 45 173
4 2000-01-05 1 47 151
5 2000-01-06 0 45 172
6 2000-01-07 0 48 167
7 2000-01-08 0 45 157
8 2000-01-09 1 42 157
9 2000-01-10 1 42 164 用a.groupby('gender').sum()得到的结果为: #注意在python中groupby(''xx)后要加sum(),不然显示
不了数据对象。
gender height weight
0 256 989
1 170 643

此外用a.groupby('gender').size()可以对各个gender下的数目进行计数。

所以可以看到groupby的作用相当于:
按gender对gender进行分类,对应为数字的列会自动求和,而为字符串类型的列则不显示;当然也可以同时groupby(['x1','x2',...])多个字段,其作用与上面类似。

七、Categorical按某一列重新编码分类

如六中要对a中的gender进行重新编码分类,将对应的0,1转化为male,female,过程如下:

a['gender1']=a['gender'].astype('category')
a['gender1'].cat.categories=['male','female'] #即将0,1先转化为category类型再进行编码。 print(a)得到的结果为:
date gender height weight gender1
0 2000-01-01 1 40 163 female
1 2000-01-02 0 44 177 male
2 2000-01-03 1 40 167 female
3 2000-01-04 0 41 161 male
4 2000-01-05 0 48 177 male
5 2000-01-06 1 46 179 female
6 2000-01-07 1 42 154 female
7 2000-01-08 1 43 170 female
8 2000-01-09 0 46 158 male
9 2000-01-10 1 44 168 female

所以可以看出重新编码后的编码会自动增加到dataframe最后作为一列。

八、相关操作

描述性统计:
1.a.mean() 默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值;

2.统计某一列x中各个值出现的次数:a['x'].value_counts();

3.对数据应用函数
a.apply(lambda x:x.max()-x.min())
表示返回所有列中最大值-最小值的差。

4.字符串相关操作
a['gender1'].str.lower() 将gender1中所有的英文大写转化为小写,注意dataframe没有str属性,只有series有,所以要选取a中的gender1字段。

九、时间序列

在六中用pd.date_range('xxxx',periods=xx,freq='D/M/Y....')函数生成连续指定天数的的日期列表。
例如pd.date_range('20000101',periods=10),其中periods表示持续频数;
pd.date_range('20000201','20000210',freq='D')也可以不指定频数,只指定起始日期。

此外如果不指定freq,则默认从起始日期开始,频率为day。其他频率表示如下:

 
1.png

十、画图(plot)

在pycharm中首先要:import matplotlib.pyplot as plt
a=Series(np.random.randn(1000),index=pd.date_range('20100101',periods=1000))
b=a.cumsum()
b.plot()
plt.show() #最后一定要加这个plt.show(),不然不会显示出图来。
 
2.PNG

也可以使用下面的代码来生成多条时间序列图:

a=DataFrame(np.random.randn(1000,4),index=pd.date_range('20100101',periods=1000),columns=list('ABCD'))
b=a.cumsum()
b.plot()
plt.show()
 
3.png

十一、导入和导出文件

写入和读取excel文件
虽然写入excel表时有两种写入xls和csv,但建议少使用csv,不然在表中调整数据格式时,保存时一直询问你是否保存新格式,很麻烦。而在读取数据时,如果指定了哪一张sheet,则在pycharm又会出现格式不对齐。

还有将数据写入表格中时,excel会自动给你在表格最前面增加一个字段,对数据行进行编号。

a.to_excel(r'C:\\Users\\guohuaiqi\\Desktop\\2.xls',sheet_name='Sheet1')    

a=pd.read_excel(r'C:\\Users\\guohuaiqi\\Desktop\\2.xls','Sheet1',na_values=['NA'])

注意sheet_name后面的Sheet1中的首字母大写;读取数据时,可以指定读取哪一张表中的数据,而
且对缺失值补上NA。 最后再附上写入和读取csv格式的代码:
a.to_csv(r'C:\\Users\\guohuaiqi\\Desktop\\1.csv',sheet_name='Sheet1')
a=pd.read_csv(r'C:\\Users\\guohuaiqi\\Desktop\\1.csv',na_values=['NA'])

参考地址:https://www.jianshu.com/p/682c24aef525

pd库dataframe基本操作的更多相关文章

  1. Python数据分析库pandas基本操作

    Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...

  2. DataFrame基本操作

    这些操作在网上都可以百度得到,为了便于记忆自己再根据理解总结在一起.---------励志做一个优雅的网上搬运工 1.建立dataframe (1)Dict to Dataframe df = pd. ...

  3. MYSQL安装与库的基本操作

    mysql数据库 什么是数据库 # 用来存储数据的仓库 # 数据库可以在硬盘及内存中存储数据 数据库与文件存储数据区别 数据库本质也是通过文件来存储数据, 数据库的概念就是系统的管理存储数据的文件 数 ...

  4. Python学习day42-数据库的基本操作(1)

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  5. python做数据分析pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...

  6. 用python做数据分析pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...

  7. pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构的基本操作 ...

  8. 用python做数据分析4|pandas库介绍之DataFrame基本操作

    原文地址 怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构 ...

  9. 机器学习三剑客之Pandas中DataFrame基本操作

    Pandas 是基于Numpy 的一种工具,是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷 ...

随机推荐

  1. C++扬帆远航——4(百钱百鸡)

    /* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:baiji.cpp * 作者:常轩 * 完成日期:2016年3月 ...

  2. SpringBoot&Shiro实现用户认证

    SpringBoot&Shiro实现用户认证 实现思路 思路:实现认证功能主要可以归纳为3点 1.定义一个ShiroConfig配置类,配置 SecurityManager Bean , Se ...

  3. java基础进阶篇(四)_HashMap------【java源码栈】

    目录 一.前言 二.特点和常见问题 二.接口定义 三.初始化构造函数 四.HashMap内部结构 五.HashMap的存储分析 六.HashMap的读取分析 七.常用方法 八.HashMap 的jav ...

  4. yii2设置默认控制器

    以Yii2高级模板配置为例

  5. Vue双向绑定的实现原理系列(三):监听器Observer和订阅者Watcher

    监听器Observer和订阅者Watcher 实现简单版Vue的过程,主要实现{{}}.v-model和事件指令的功能 主要分为三个部分 github源码 1.数据监听器Observer,能够对数据对 ...

  6. js中~~和^=分别代表什么,用处是什么?

    先看个栗子: ~~false === 0 ~~true === 1 ~~undefined === 0 ~~!undefined === 1 ~~null === 0 ~~!null === 1 ~~ ...

  7. GPS北斗NTP校时服务器原理及功能介绍

    在科技的发展下GPS北斗NTP校时服务器也得到了广泛应用,比如工业.科研.航空航天.公共场所等领域都用到了GPS北斗NTP校时服务器,该时间服务器以卫星时间为基准授时准确,替代了传统钟表授时的单一和时 ...

  8. LeetCode(不用加号的加法)

    题目: 设计一个函数把两个数相加,不得使用+或者其他算数运算符. 示例: 输入:a=1,b=1 输出:2 提示: a,b均有可能是负数或0 结果不会溢出32位整数 初始思路: 看到题目我就明白只能用位 ...

  9. C++基础 学习笔记之一:源代码的格式化

    C++基础 学习笔记之一:源代码的格式化 1. 源代码中的标记与空白 C++中的语句是以分号表示语句的结束.在C++中空格和回车以及制表符均为相同作用,即三者通常可以互相替代. 例如可以将一个简单的m ...

  10. ESLint {} 内部强制有空格 .eslintrc.js 配置文件 'object-curly-spacing': ["error", "always"],

    module.exports = { root: true, 'extends': [ 'plugin:vue/essential', '@vue/standard' ], rules: { 'obj ...