pd库dataframe基本操作
一、查看数据(查看对象的方法对于Series来说同样适用)
1.查看DataFrame前xx行或后xx行
a=DataFrame(data);
a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据。
a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据。
2.查看DataFrame的index,columns以及values
a.index ; a.columns ; a.values 即可
3.describe()函数对于数据的快速统计汇总
a.describe()对每一列数据进行统计,包括计数,均值,std,各个分位数等。
4.对数据的转置
a.T
5.对轴进行排序
a.sort_index(axis=1,ascending=False);
其中axis=1表示对所有的columns进行排序,下面的数也跟着发生移动。后面的ascending=False表示按降序排列,参数缺失时默认升序。
6.对DataFrame中的值排序
a.sort(columns='x')
即对a中的x这一列,从小到大进行排序。注意仅仅是x这一列,而上面的按轴进行排序时会对所有的columns进行操作。
二、选择对象
1.选择特定列和行的数据
a['x'] 那么将会返回columns为x的列,注意这种方式一次只能返回一个列。a.x与a['x']意思一样。
取行数据,通过切片[]来选择
如:a[0:3] 则会返回前三行的数据。
2.loc是通过标签来选择数据
a.loc['one']则会默认表示选取行为'one'的行;
a.loc[:,['a','b'] ] 表示选取所有的行以及columns为a,b的列;
a.loc[['one','two'],['a','b']] 表示选取'one'和'two'这两行以及columns为a,b的列;
a.loc['one','a']与a.loc[['one'],['a']]作用是一样的,不过前者只显示对应的值,而后者会显示对应的行和列标签。
3.iloc则是直接通过位置来选择数据
这与通过标签选择类似
a.iloc[1:2,1:2] 则会显示第一行第一列的数据;(切片后面的值取不到)
a.iloc[1:2] 即后面表示列的值没有时,默认选取行位置为1的数据;
a.iloc[[0,2],[1,2]] 即可以自由选取行位置,和列位置对应的数据。
4.使用条件来选择
使用单独的列来选择数据
a[a.c>0] 表示选择c列中大于0的数据
使用where来选择数据
a[a>0] 表直接选择a中所有大于0的数据
使用isin()选出特定列中包含特定值的行
a1=a.copy()
a1[a1['one'].isin(['2','3'])] 表显示满足条件:列one中的值包含'2','3'的所有行。
三、设置值(赋值)
赋值操作在上述选择操作的基础上直接赋值即可。
例a.loc[:,['a','c']]=9 即将a和c列的所有行中的值设置为9
a.iloc[:,[1,3]]=9 也表示将a和c列的所有行中的值设置为9
同时也依然可以用条件来直接赋值
a[a>0]=-a 表示将a中所有大于0的数转化为负值
四、缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中。
1.reindex()方法
用来对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝。
a.reindex(index=list(a.index)+['five'],columns=list(a.columns)+['d'])
a.reindex(index=['one','five'],columns=list(a.columns)+['d'])
即用index=[]表示对index进行操作,columns表对列进行操作。
** 2.对缺失值进行填充**
a.fillna(value=x)
表示用值为x的数来对缺失值进行填充
** 3.去掉包含缺失值的行**
a.dropna(how='any')
表示去掉所有包含缺失值的行
4.空数据行列的处理:
可以通过axis参数来删除含有空数据的全部列
df4 = df4.dropna(axis=1)
# 可以通过subset参数来删除在age和sex中含有空数据的全部行
df4 = df4.dropna(subset=["age", "sex"])
print(df4)
df4 = df4.dropna(subset=['age', 'body','home.dest'])
五、合并
1.contact
contact(a1,axis=0/1,keys=['xx','xx','xx',...]),其中a1表示要进行进行连接的列表数据,axis=1时表横着对数据进行连接。axis=0或不指定时,表将数据竖着进行连接。a1中要连接的数据有几个则对应几个keys,设置keys是为了在数据连接以后区分每一个原始a1中的数据。
例:a1=[b['a'],b['c']]
result=pd.concat(a1,axis=1,keys=['1','2'])
2.Append 将一行或多行数据连接到一个DataFrame上
a.append(a[2:],ignore_index=True)
表示将a中的第三行以后的数据全部添加到a中,若不指定ignore_index参数,则会把添加的数据的index保留下来,若ignore_index=Ture则会对所有的行重新自动建立索引。
3.merge类似于SQL中的join
设a1,a2为两个dataframe,二者中存在相同的键值,两个对象连接的方式有下面几种:
(1)内连接,pd.merge(a1, a2, on='key')
(2)左连接,pd.merge(a1, a2, on='key', how='left')
(3)右连接,pd.merge(a1, a2, on='key', how='right')
(4)外连接, pd.merge(a1, a2, on='key', how='outer')
至于四者的具体差别,具体学习参考sql中相应的语法。
删除重复行
第一个想法:把所有重复的行去掉
第二个想法:只保留第一次出现的重复行
第三个想法:保留最后一次出现的重复行
这三个想法都可以用pandas中自带一个方法实现。 DataFrame.drop_duplicates()
newdata.drop_duplicates(subset=['A','B','C','D'],keep=False)
上面这一句代码就是把所有重复的行去掉,subset这个参数后面我会提到,keep这个参数就是选择我们前面三个想法中的哪一个?
当keep=False时,就是去掉所有的重复行
当keep=‘first'时,就是保留第一次出现的重复行
当keep='last'时就是保留最后一次出现的重复行。(注意,这里的参数是字符串)
下面讲一下subset这个参数。
在上面的场景中,我们对重复的定义是:在某一行,若A、B、C、D这四列如果都相同的话就是重复。
但是有时候,我们重复并不需要所有列都相同,我们只需要其中的某几列相同就可以当作重复。因此subset这个参数就是来设置这个的。
举个栗子,还是上面这个数据集,如果我们想把A列和B列中元素相同的行去掉,只保留第一次出现的行,要怎么做?
很简单,
newdata.drop_duplicates(subset=['A','B'],keep='first')
从结果上我们可以看到,第0行和第1行由于A列B列相同,而且选择保留第一次出现的行,所以第1行被去掉。
第2行和第5行的A列B列相同,保留第一次出现的行,所以第5行被去掉。
六、分组(groupby)
用pd.date_range函数生成连续指定天数的的日期
pd.date_range('20000101',periods=10)
def shuju():
data={
'date':pd.date_range('20000101',periods=10),
'gender':np.random.randint(0,2,size=10),
'height':np.random.randint(40,50,size=10),
'weight':np.random.randint(150,180,size=10)
}
a=DataFrame(data)
print(a)
date gender height weight
0 2000-01-01 0 47 165
1 2000-01-02 0 46 179
2 2000-01-03 1 48 172
3 2000-01-04 0 45 173
4 2000-01-05 1 47 151
5 2000-01-06 0 45 172
6 2000-01-07 0 48 167
7 2000-01-08 0 45 157
8 2000-01-09 1 42 157
9 2000-01-10 1 42 164
用a.groupby('gender').sum()得到的结果为: #注意在python中groupby(''xx)后要加sum(),不然显示
不了数据对象。
gender height weight
0 256 989
1 170 643
此外用a.groupby('gender').size()可以对各个gender下的数目进行计数。
所以可以看到groupby的作用相当于:
按gender对gender进行分类,对应为数字的列会自动求和,而为字符串类型的列则不显示;当然也可以同时groupby(['x1','x2',...])多个字段,其作用与上面类似。
七、Categorical按某一列重新编码分类
如六中要对a中的gender进行重新编码分类,将对应的0,1转化为male,female,过程如下:
a['gender1']=a['gender'].astype('category')
a['gender1'].cat.categories=['male','female'] #即将0,1先转化为category类型再进行编码。
print(a)得到的结果为:
date gender height weight gender1
0 2000-01-01 1 40 163 female
1 2000-01-02 0 44 177 male
2 2000-01-03 1 40 167 female
3 2000-01-04 0 41 161 male
4 2000-01-05 0 48 177 male
5 2000-01-06 1 46 179 female
6 2000-01-07 1 42 154 female
7 2000-01-08 1 43 170 female
8 2000-01-09 0 46 158 male
9 2000-01-10 1 44 168 female
所以可以看出重新编码后的编码会自动增加到dataframe最后作为一列。
八、相关操作
描述性统计:
1.a.mean() 默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值;
2.统计某一列x中各个值出现的次数:a['x'].value_counts();
3.对数据应用函数
a.apply(lambda x:x.max()-x.min())
表示返回所有列中最大值-最小值的差。
4.字符串相关操作
a['gender1'].str.lower() 将gender1中所有的英文大写转化为小写,注意dataframe没有str属性,只有series有,所以要选取a中的gender1字段。
九、时间序列
在六中用pd.date_range('xxxx',periods=xx,freq='D/M/Y....')函数生成连续指定天数的的日期列表。
例如pd.date_range('20000101',periods=10),其中periods表示持续频数;
pd.date_range('20000201','20000210',freq='D')也可以不指定频数,只指定起始日期。
此外如果不指定freq,则默认从起始日期开始,频率为day。其他频率表示如下:

十、画图(plot)
在pycharm中首先要:import matplotlib.pyplot as plt
a=Series(np.random.randn(1000),index=pd.date_range('20100101',periods=1000))
b=a.cumsum()
b.plot()
plt.show() #最后一定要加这个plt.show(),不然不会显示出图来。
也可以使用下面的代码来生成多条时间序列图:
a=DataFrame(np.random.randn(1000,4),index=pd.date_range('20100101',periods=1000),columns=list('ABCD'))
b=a.cumsum()
b.plot()
plt.show()

十一、导入和导出文件
写入和读取excel文件
虽然写入excel表时有两种写入xls和csv,但建议少使用csv,不然在表中调整数据格式时,保存时一直询问你是否保存新格式,很麻烦。而在读取数据时,如果指定了哪一张sheet,则在pycharm又会出现格式不对齐。
还有将数据写入表格中时,excel会自动给你在表格最前面增加一个字段,对数据行进行编号。
a.to_excel(r'C:\\Users\\guohuaiqi\\Desktop\\2.xls',sheet_name='Sheet1')
a=pd.read_excel(r'C:\\Users\\guohuaiqi\\Desktop\\2.xls','Sheet1',na_values=['NA'])
注意sheet_name后面的Sheet1中的首字母大写;读取数据时,可以指定读取哪一张表中的数据,而
且对缺失值补上NA。
最后再附上写入和读取csv格式的代码:
a.to_csv(r'C:\\Users\\guohuaiqi\\Desktop\\1.csv',sheet_name='Sheet1')
a=pd.read_csv(r'C:\\Users\\guohuaiqi\\Desktop\\1.csv',na_values=['NA'])
参考地址:https://www.jianshu.com/p/682c24aef525
pd库dataframe基本操作的更多相关文章
- Python数据分析库pandas基本操作
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...
- DataFrame基本操作
这些操作在网上都可以百度得到,为了便于记忆自己再根据理解总结在一起.---------励志做一个优雅的网上搬运工 1.建立dataframe (1)Dict to Dataframe df = pd. ...
- MYSQL安装与库的基本操作
mysql数据库 什么是数据库 # 用来存储数据的仓库 # 数据库可以在硬盘及内存中存储数据 数据库与文件存储数据区别 数据库本质也是通过文件来存储数据, 数据库的概念就是系统的管理存储数据的文件 数 ...
- Python学习day42-数据库的基本操作(1)
figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...
- python做数据分析pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...
- 用python做数据分析pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...
- pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构的基本操作 ...
- 用python做数据分析4|pandas库介绍之DataFrame基本操作
原文地址 怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构 ...
- 机器学习三剑客之Pandas中DataFrame基本操作
Pandas 是基于Numpy 的一种工具,是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷 ...
随机推荐
- u-boot的环境变量详解
u-boot的环境变量 u-boot的环境变量是使用u-boot的关键,它可以由你自己定义的,但是其中有一些也是大家经常使用,约定熟成的,有一些是u-boot自己定义的,更改这些名字会出现错 ...
- 有关PHP的可变函数
事情的起因是这样子的,最近看到一道题,问的是 <?php $_POST['a']($_POST['b']);?> 这句代码有什么问题,答案很明显因为PHP的可变函数这个特性,导致了任意代码 ...
- c#版阿里云oss上传——基于layui、pupload的oss 后端web端直传的vue组件
废话前言 去年,做项目用到oss上传,度娘上逛了一圈写了个前后端代码结合的c#版oss上传. 今年又要用到oss上传时发现很难复用,复用改动的范围太大,显然这个轮子不合格.于是想了下,花了一天的时间( ...
- CentOS7 部署K8S集群,最新版1.17.3-0
小白在网上找了很多关于k8s集群部署的文档,但是版本老旧,到处踩坑,终于部署成功,记录下过程. 一.准备工作 虚拟机:VMware® Workstation 15 Pro Xhell 6:Xshell ...
- Web中间件常见漏洞总结
一.IIS中间组件: 1.PUT漏洞 2.短文件名猜解 3.远程代码执行 4.解析漏洞 二.Apache中间组件: 1.解析漏洞 2.目录遍历 三.Nginx中间组件: 1.文件解析 2.目录遍历 3 ...
- 后渗透之meterpreter使用攻略
Metasploit中的Meterpreter模块在后渗透阶段具有强大的攻击力,本文主要整理了meterpreter的常用命令.脚本及使用方式.包含信息收集.提权.注册表操作.令牌操纵.哈希利用.后门 ...
- python数组和字符串互相转换
字符串转数组 str = '1,2,3' arr = str.split(',') 数组转字符串 arr = ['a','b'] str = ','.join(arr) arr = [1,2,3] s ...
- 图解Python网络编程
返回目录 本篇索引 (1)基本原理 (2)socket模块 (3)select模块 (4)asyncore模块 (5)asynchat模块 (6)socketserver模块 (1)基本原理 本篇指的 ...
- 使用HBuilder开发移动APP:开发环境准备(转)
一直想开发个APP玩玩的,但是作为一个PHP码农,需要新学习JAVA或者Object C,这也是一直没能实现这个目标的原因.但是现在HTML5+.APPCAN.apicloud很多工具利用前端技术就能 ...
- 基于springboot多模块项目使用maven命令打成war包放到服务器上运行的问题
首先,大家看到这个问题,可能并不陌生,而且脑子里第一映像就是使用mava中的clear package 或者 clear install进行打包,然后在项目中的target文件夹下面找到xxx.war ...