一步一步教你PowerBI数据分析:制作客户RFM数据分析
客户分析就是根据客户信息数据来分析客户特征,评估客户价值,从而为客户制订相应的营销策略与资源配置。通过合理、系统的客户分析,企业可以知道不同的客户有着什么样的需求,分析客户消费特征与商务效益的关系,使运营策略得到最优的规划;更为重要的是可以发现潜在客户,从而进一步扩大商业规模,使企业得到快速的发展。
企业客户分析可以从以下几个方面入手,对客户数据信息展开分析:
1、分析客户个性化需求
“以客户为中心”的个性化服务越来越受到重视。实施CRM的一个重要目标就是能够分析出客户的个性化需求,并对这种需求采取相应措施,同时分析不同客户对企业效益的不同影响,以便做出正确的决策。这些都使得客户分析成为企业实施CRM时不可缺少的组成部分。
2、分析客户行为
企业可以利用收集到的信息,跟踪并分析每一个客户的信息,不仅知道什么样的客户有什么样的需求,同时还能观察和分析客户行为对企业收益的影响,使企业与客户的关系及企业利润得到最优化。
3、分析有价值的信息
利用客户分析系统,企业不再只依靠经验来推测,而是利用科学的手段和方法,收集、分析和利用各种客户信息,从而轻松的获得有价值的信息。如企业的哪些产品最受欢迎,原因是什么,有什么回头客,哪些客户是最赚钱的客户,售后服务有哪些问题等。客户分析将帮助 企业充分利用其客户关系资源,在新经济时代从容自由地面对客户。
目前国内企业对客户的分析还很欠缺,分析手段较为简单,而简单的统计方法虽然可以在一定程度上得出分析结果,但因为不同企业发展中存在一定的不平衡性,利用简单的统计模式得出的结论容易有较大的误差,难以满足企业的特殊需求。因而企业需要有更加完善、合理的客户分析方案,进一步提高客户分析的合理性、一致性,并能在对 潜在客户的培养和发现中提供更多的决策支持。
本文将使用客户RFM模型来衡量客户价值,当然仅一个模型也无法完整并系统的分析客户,还是需要结合CRM系统中的数据,切勿过度依赖该模型来分析客户价值。该模型仅供决策参考。接下来我们来看一下RFM模型是什么?

RFM分析(Recency,Frequency,Monetary)是用来细分用户和衡量客户价值的一个重要工具,就是根据客户活跃程度和交易金额的贡献,进行客户价值细分的一种方法。
RFM的含义:
R(Recency):客户最近一次交易时间的间隔。R值越大,表示客户交易发生的日期越久,反之则表示客户交易发生的日期越近。
F(Frequency):客户在最近一段时间内交易的次数。F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。
M(Monetary):客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。
本文中通过分析某个店铺客户消费数据,将会员分为以下8种,以便有针对性的做营销决策,实现精细化运营:

一、RFM数据源
我们准备的数据源中有很多的字段,由RFM模型的含义可知。我们需要通过订单日期判断R值,订单ID判断F值,销售额判断M值,客户ID是基础数据,其他的字段就是冗余字段

二、RFM值
1、确定R值
确定R值为指定日期和最近购买日期之间的差异天数,计算每个客户的最近一次消费日期。再根据截止日期的时间和最后一个交易日期的差值
RFM R =
AVERAGEX( DISTINCT('维度_客户'[客户名称]) ,
CALCULATE(
AVERAGEX( '事实_订单', DATEDIFF( [订单日期] , LASTDATE( '维度_RFM日期'[Date] ) , DAY ) ) ,
TREATAS( VALUES( '维度_RFM日期'[Date] ) , '事实_订单'[订单日期])
)
)
R最大值
RFM R MAX =
MAXX( ALL('维度_客户'[客户名称]) ,
CALCULATE(
AVERAGEX( '事实_订单' , DATEDIFF( [订单日期] , LASTDATE( '维度_RFM日期'[Date] ) , DAY ) ) ,
TREATAS( VALUES( '维度_RFM日期'[Date] ) , '事实_订单'[订单日期])
)
)
R最小值
RFM R MIN =
MINX( ALL( '维度_客户'[客户名称]) ,
CALCULATE(
AVERAGEX( '事实_订单' , DATEDIFF( [订单日期] , LASTDATE( '维度_RFM日期'[Date] ) , DAY ) ) ,
TREATAS( VALUES( '维度_RFM日期'[Date] ) , '事实_订单'[订单日期] )
)
R平均值
RFM R AVG = CALCULATE( [RFM R] , ALL('维度_客户') )
2、确定F值
交易次数值需要感觉非重复计数获得,这里根据虚拟关系筛选计数顾客交易次数
RFM F =
AVERAGEX( DISTINCT('维度_客户'[客户名称]) ,
CALCULATE('度量值'[顾客交易次数] , TREATAS( VALUES('维度_RFM日期'[Date]) , '事实_订单'[订单日期]))
)
F最大值
RFM F MAX =
MAXX( ALL('维度_客户'[客户名称]) ,
CALCULATE('度量值'[顾客交易次数] , TREATAS( VALUES('维度_RFM日期'[Date]) , '事实_订单'[订单日期]))
)
F最小值
RFM F MIN = MINX( ALL('维度_客户'[客户名称]) , CALCULATE('度量值'[顾客交易次数] , TREATAS( VALUES('维度_RFM日期'[Date]) , '事实_订单'[订单日期])))
F平均值
RFM F AVG = CALCULATE( [RFM F] , ALL('维度_客户') )
3、确定M值
M值为每个客户共享的销售金额
RFM M = AVERAGEX( DISTINCT( '维度_客户'[客户名称]) , CALCULATE('度量值'[销售金额], TREATAS( VALUES( '维度_RFM日期'[Date] ) , '事实_订单'[订单日期] ) ))
M最大值
RFM M MAX = MAXX( ALL( '维度_客户'[客户名称]) , CALCULATE('度量值'[销售金额], TREATAS( VALUES( '维度_RFM日期'[Date] ) , '事实_订单'[订单日期] ) ))
M最小值
RFM M MIN = MINX( ALL('维度_客户'[客户名称]) , CALCULATE('度量值'[销售金额], TREATAS( VALUES( '维度_RFM日期'[Date] ) , '事实_订单'[订单日期]) ))
M平均值
RFM M AVG = CALCULATE( [RFM M] , ALL( '维度_客户' ) )
三、确定客户类型
确定RFM值后,我们将R、F、M分别与平均值比较,计数出RFM的得分情况
RFM R 分数 = IF( NOT ISBLANK( [RFM R] ) , DIVIDE( [RFM R MAX] - [RFM R] , [RFM R MAX] - [RFM R MIN] ) * 100 )
RFM F 分数 = IF( NOT ISBLANK( [RFM F] ) , DIVIDE( [RFM F] - [RFM F MIN] , [RFM F MAX] - [RFM F MIN] ) * 100 )
RFM M 分数 = IF( NOT ISBLANK( [RFM M] ) , DIVIDE( [RFM M] - [RFM M MIN] , [RFM M MAX] - [RFM M MIN] ) * 100 )
四、新建辅助表
1、新建RFM分类表
可以直接输入数据,也可以通过Excel导入数据。

2、新建权重参数表
权重参数从0到100进行设定
参数_RFM R权重 = GENERATESERIES(0, 100, 1)
参数_RFM F权重 = GENERATESERIES(0, 100, 1)
参数_RFM M权重 = GENERATESERIES(0, 100, 1)
3、新建TOP参数表
参数_RFM TOP X = GENERATESERIES(0, 100, 1)
五、制作可视化报告
1、制作表格,拖放已经计算好的数据

2、制作客户RFM权重占比环形图

3、制作客户分类占比环形图

4、制作客户RFM得分排名条形图

5、制作切片器
切片器拖放辅助表中的权重R\F\M字段和TopX字段,并设置显示格式为下拉。日期切片器直接设置开启滑块

六、总结
客户RFM分析首先需要根据订单数据来计算RFM的值,其次通过辅助表进行补充动态设定的参数。再次通过RFM的值和最大值、最小值对比使用平均函数进行计算出RFM得分情况。通过辅助表客户分类维度,来确定客户所属分类。该模型可以动态根据企业对R,F,M设定不同的权重来计算客户的价值。
对于销售分析的指标的分析模型还有动态ABC分析模型,在后续得文章中会给大家展现。

一步一步教你PowerBI数据分析:制作客户RFM数据分析的更多相关文章
- 一步一步教你PowerBI利用爬虫获取天气数据分析
对于爬虫大家应该不会陌生,我们首先来看一下爬虫的定义:网络爬虫是一种自动获取网页内容的程序,是搜索引擎的重要组成部分.网络爬虫为搜索引擎从万维网下载网页,自动获取网页内容的应用程序.看到定义我们应该已 ...
- 使用Python一步一步地来进行数据分析总结
原文链接:Step by step approach to perform data analysis using Python译文链接:使用Python一步一步地来进行数据分析--By Michae ...
- 一步一步教你如何在linux下配置apache+tomcat(转)
一步一步教你如何在linux下配置apache+tomcat 一.安装前准备. 1. 所有组件都安装到/usr/local/e789目录下 2. 解压缩命令:tar —vxzf 文件名(. ...
- 一步一步教你将普通的wifi路由器变为智能广告路由器
一步一步教你将普通的wifi路由器变为智能广告路由器 相信大家对WiFi智能广告路由器已经不再陌生了,现在很多公共WiFi上网,都需要登录并且验证,这也就是WiFi广告路由器的最重要的功能.大致就是下 ...
- 一步一步教你使用Git
一步一步教你使用Git 互联网给我们带来方便的同时,也时常让我们感到困惑.随便搜搜就出一大堆结果,然而总是有大量的重复和错误.小妖发出的内容,都是自己实测过的,有问题请留言. 现在,你已经安装了Git ...
- 使用WPF教你一步一步实现连连看
使用WPF教你一步一步实现连连看(一) 第一步: 问题,怎样动态的建立一个10*10的grid(布局) for (int i = 0; i < 10; i++){ RowDefinition r ...
- 一步一步教你用 Vue.js + Vuex 制作专门收藏微信公众号的 app
一步一步教你用 Vue.js + Vuex 制作专门收藏微信公众号的 app 转载 作者:jrainlau 链接:https://segmentfault.com/a/1190000005844155 ...
- Ace教你一步一步做Android新闻客户端(一)
复制粘贴了那么多博文很不好意思没点自己原创的也说不出去,现在写一篇一步一步教你做安卓新闻客户端,借此机会也是让自己把相关的技术再复习一遍,大神莫笑,专门做给新手看. 手里存了两篇,一个包括软件视图 和 ...
- 一步一步教你实现iOS音频频谱动画(二)
如果你想先看看最终效果再决定看不看文章 -> bilibili 示例代码下载 第一篇:一步一步教你实现iOS音频频谱动画(一) 本文是系列文章中的第二篇,上篇讲述了音频播放和频谱数据计算,本篇讲 ...
随机推荐
- spring中BeanPostProcessor之三:InitDestroyAnnotationBeanPostProcessor(01)
在<spring中BeanPostProcessor之二:CommonAnnotationBeanPostProcessor(01)>一文中,分析到在调用CommonAnnotationB ...
- 数论-质因数(gcd) UVa 10791 - Minimum Sum LCM
https://vjudge.net/problem/UVA-10791/origin 以上为题目来源Google翻译得到的题意: 一组整数的LCM(最小公倍数)定义为最小数,即 该集合的所有整数的倍 ...
- 【Java】FlowControl 流程控制
FlowControl 流程控制 什么是流程控制? 控制流程(也称为流程控制)是计算机运算领域的用语,意指在程序运行时,个别的指令(或是陈述.子程序)运行或求值的顺序. 不论是在声明式编程语言或是函数 ...
- Sentry实时应用错误跟踪系统在Kubernetes中私有化部署
应用错误跟踪系统:对软件系统运行过程中产生的错误日志进行收集从而实现监控告警. 虽然软件错误❌是不可避免的,但是可以降低错误数. 提高对错误的治理能力能让错误带来的损失降到最低
- frame/iframe多表单切换
应用场景: 在Web应用中经常会遇到frame/iframe表单嵌套页面的应用,WebDriver只能在一个页面上对元素识别与定位,对于frame/iframe表单内嵌页面上的元素无法直接定位.这时就 ...
- 博云DevOps 3.0重大升级 | 可用性大幅提升、自研需求管理&自定义工作流上线,满足客户多样化需求
DevOps能够为企业带来更高的部署频率.更短的交付周期与更快的客户响应速度.标准化.规范化的管理流程,可视化和数字化的研发进度管理和可追溯的版本也为企业带来的了更多的价值.引入DevOps成为企业实 ...
- 安装和使用redis
我现在只是在window上使用redis在其他平台上暂时没有操作过,如果你有其他好的意见欢迎提出来! 安装redis具体可查看:http://www.runoob.com/redis/redis-in ...
- JQ获取select上的option的data-start和data-id
来源:https://zhidao.baidu.com/question/692142321436883524.html 静态的写法: 用jq的attr()函数,如: HTML: <select ...
- ansible的模块使用
转载于 https://www.cnblogs.com/franknihao/p/8631302.html [Ansible 模块] 就如python库一样,ansible的模块也分成了基本模块和 ...
- vue + ArcGIS 地图应用系列一:arcgis api本地部署(开发环境)
封面 1. 下载 ArcGIS API for JavaScript 官网地址: https://developers.arcgis.com/javascript/3/ 下载地址:http://lin ...