@description@

对于一棵 n 个点的树,我们称两个点是相邻的当且仅当两个点的距离 <= 2。

现在给定 n 个集合,每一个集合表示树上某个点的相邻点是哪些。不过你不知道哪个集合对应哪个点。

现在这些集合构造出原树。保证至少存在一个解。如果多解,输出任意解即可。

原题传送门。

@solution@

两个点 x, y 对应的集合交集在树上仍然是一个连通块。

如果两个点 x, y 在树上距离 > 4,则它们集合交集为空。

如果两个点 x, y 在树上距离 = 4,则它们集合交集大小为 1。

如果两个点 x, y 在树上距离 = 3,则它们集合交集大小为 2。

如果两个点 x, y 在树上距离 = 2,则它们集合交集大小 >= 3。

如果两个点 x, y 在树上距离 = 1,则它们集合交集大小取决于 n:n = 2 时交集大小为 2;否则交集大小 >= 3。

集合交集为 2,该交集就对应着树上的一条边。

我们用 bitset 维护集合,并通过取交集找出所有的这种类型的边。

如果找不到一条这种类型的边,则只能是菊花图。特判即可。

否则,因为 n = 2 则已经找出了所有边,所以我们现在默认 n ≠ 2。

此时找出的边其实就是非叶结点之间形成的连通块,不妨称为新树。我们现在只需要把叶结点(度数为 1 的点)拼到父亲上面即可得到原树。

我们对于每个非叶结点,求出在新树中距离 <= 1 的点集,称为新邻集。

原图中叶结点原邻集 = 与该叶结点父亲相同的叶结点集合 + 父亲的新邻集。

如果新树只有一条边,此时两个点的新邻集相同,因此需要特判(父亲不同的叶结点分别连两个点)。

否则,每个点的新邻集互相不同。因此我们可以把原邻集与新树取交集,找到那个唯一的父亲。

不过注意到,当某个点在新树中度数为 1,此时它的原邻集与新树取交集也会对应一个新邻集。

此时该点一定连向某个原图中叶结点,且该叶结点的原邻集是该点的真子集。因此我们再判一下是否存在某个点的原邻集是当前点的原邻集的真子集即可。

复杂度 \(O(\frac{n^3}{\omega})\),实际上跑得挺快。

@accepted code@

#include <bitset>
#include <cstdio>
#include <algorithm>
using namespace std; int tag[1005], n;
bitset<1005>a[1005], b[1005], c[1005], t, p;
int main() {
scanf("%d", &n);
for(int i=1;i<=n;i++) {
int k, x; scanf("%d", &k);
for(int j=1;j<=k;j++)
scanf("%d", &x), b[i][x] = 1;
}
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++) {
t = (b[i] & b[j]);
// printf("%d %d : %d\n", i, j, t.count());
if( t.count() == 2 ) {
int x = t._Find_first(); t[x] = 0;
int y = t._Find_first();
a[x][y] = a[y][x] = 1;
}
}
t = 0;
for(int i=1;i<=n;i++)
if( a[i].count() ) tag[i] = -1, t[i] = 1;
for(int i=1;i<=n;i++) a[i][i] = 1;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if( a[i][j] ) printf("%d %d\n", i, j);
if( t.count() == 0 ) {
for(int i=2;i<=n;i++)
printf("%d %d\n", 1, i);
}
else if( t.count() == 2 ) {
for(int x=1;x<=n;x++) {
for(int y=x+1;y<=n;y++) {
if( a[x][y] ) {
bool flag = false;
for(int i=1;i<=n;i++)
if( b[i].count() != n ) {
for(int j=1;j<=n;j++)
if( b[i][j] ) {
if( tag[j] == 1 ) break;
else if( tag[j] != -1 ) {
printf("%d %d\n", flag ? y : x, j);
tag[j] = 1;
}
}
flag = true;
}
}
}
}
}
else {
for(int i=1;i<=n;i++) {
c[i] = (b[i] & t);
bool flag = true;
for(int j=1;j<=n;j++)
if( b[i] == b[j] ) {
if( j < i ) {
flag = false;
break;
}
}
else if( (b[i] & b[j]) == b[j] ) {
flag = false;
break;
}
if( flag ) {
for(int j=1;j<=n;j++)
if( c[i] == a[j] ) {
for(int k=1;k<=n;k++)
if( b[i][k] && tag[k] == 0 )
printf("%d %d\n", j, k), tag[k] = 1;
break;
}
}
}
}
}

@details@

bitset 真好用。

一开始还想着二分图匹配找每个集合对应原树中哪一个点,不过发现找出来并不会更好做。

@codefoces - 566E@ Restoring Map的更多相关文章

  1. Codeforces.566E.Restoring Map(构造)

    题目链接 \(Description\) 对于一棵树,定义某个点的邻居集合为所有距离它不超过\(2\)的点的集合(包括它自己). 给定\(n\)及\(n\)个点的邻居集合,要求构造一棵\(n\)个点的 ...

  2. Codeforces 566E - Restoring Map(bitset 优化构造)

    Codeforces 题目传送门 & 洛谷题目传送门 本来说好的不做,结果今早又忍不住开了道题/qiao 我们称度为 \(1\) 的点为叶节点,度大于 \(1\) 的点为非叶节点. 首先考虑如 ...

  3. CF566E Restoring Map

    题意:乱序给你树上的每一个节点与之相距<=2的节点集合(并不知道这具体是哪个节点). 还原整棵树. 标程: #include<bits/stdc++.h> #define P pai ...

  4. WC2021 题目清单

    Day2 上午 <IOI题型与趣题分析> 来源 题目 完成情况 备注 IOI2002 Day1T1 Frog 已完成 IOI2002 Day1T2 Utopia IOI2002 Day1T ...

  5. Tree Restoring

    Tree Restoring Time limit : 2sec / Memory limit : 256MB Score : 700 points Problem Statement Aoki lo ...

  6. Backing Up and Restoring HBase Data

    There are two strategies for backing up HBase:1> Backing it up with a full cluster shutdown2> ...

  7. PatentTips – GPU Saving and Restoring Thread Group Operating State

    BACKGROUND OF THE INVENTION The present invention relates generally to single-instruction, multiple- ...

  8. mapreduce中一个map多个输入路径

    package duogemap; import java.io.IOException; import java.util.ArrayList; import java.util.List; imp ...

  9. .NET Core中间件的注册和管道的构建(3) ---- 使用Map/MapWhen扩展方法

    .NET Core中间件的注册和管道的构建(3) ---- 使用Map/MapWhen扩展方法 0x00 为什么需要Map(MapWhen)扩展 如果业务逻辑比较简单的话,一条主管道就够了,确实用不到 ...

随机推荐

  1. strom_hdfs与Sequence详解

    这片博客主要是讲解storm-hdfs,Squence及它们的trident方法使用,不多说上代码: pom.xml <dependency> <groupId>org.apa ...

  2. 理解javascript中的连续赋值

    之前在扒源码时经常看到类似的连续赋值操作:  var a = b = 1;  在某度搜了众多前辈的博客,总算对这骚操作有点眉目. Case analysis 首先,javascript中连续赋值最典型 ...

  3. 关于Slow HTTP Denial of Service Attack slowhttptest的几种慢攻击DOS原理

    关于Slow HTTP Denial of Service Attack  slowhttptest的几种慢攻击DOS原理 http://www.myhack58.com/Article/60/sor ...

  4. 使用EditPlus根据指定字符批量换行,快速填充Postman请求参数键值对

    1.当某个.ext格式的文件中的重复格式内容太多时,而又想要根据某个字符进行批量换行时,那么可以使用EditPlus进行批量换行. 在开发过程中就会经常遇到这种问题,比如把Url的请求参数,快速的填写 ...

  5. FPGA开发工具套餐搭配推荐及软件链接 (更新于2020.03.16)

    一.Xilinx(全球FPGA市场份额最大的公司,其发展动态往往也代表着整个FPGA行业的动态) (1) Xilinx官方软件下载地址链接: https://china.xilinx.com/supp ...

  6. Istio Gateway网关

    Istio Ingress Gateway Istio 服务网格中的网关 使用网关为网格来管理入站和出站流量,可以让用户指定要进入或离开网格的流量. 使用网关为网格来管理入站和出站流量,可以让用户指定 ...

  7. MySQL知识-redis实例

    规划.搭建过程:6个redis实例,一般会放到3台硬件服务器注:在企业规划中,一个分片的两个分到不同的物理机,防止硬件主机宕机造成的整个分片数据丢失.端口号:7000-7005 # 1. 安装集群插件 ...

  8. Golang源码学习:调度逻辑(三)工作线程的执行流程与调度循环

    本文内容主要分为三部分: main goroutine 的调度运行 非 main goroutine 的退出流程 工作线程的执行流程与调度循环. main goroutine 的调度运行 runtim ...

  9. 写给程序员的机器学习入门 (五) - 递归模型 RNN,LSTM 与 GRU

    递归模型的应用场景 在前面的文章中我们看到的多层线性模型能处理的输入数量是固定的,如果一个模型能接收两个输入那么你就不能给它传一个或者三个.而有时候我们需要根据数量不一定的输入来预测输出,例如文本就是 ...

  10. 低功耗SRAM主要三部分功耗来源

    随着SOC 技术的迅猛发展,由电池供电的便携式电子产品得到了广泛应用,如智能手机.运动手环.ipad.部分汽车电子等.近年来半导体工艺已进入深亚微米甚至纳米阶段,工艺尺寸不断缩小,但是由于电池技术的缓 ...