从linux源码看socket的阻塞和非阻塞
从linux源码看socket的阻塞和非阻塞
笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情。
大部分高性能网络框架采用的是非阻塞模式。笔者这次就从linux源码的角度来阐述socket阻塞(block)和非阻塞(non_block)的区别。 本文源码均来自采用Linux-2.6.24内核版本。
一个TCP非阻塞client端简单的例子
如果我们要产生一个非阻塞的socket,在C语言中如下代码所示:
// 创建socket
int sock_fd = socket(AF_INET, SOCK_STREAM, 0);
...
// 更改socket为nonblock
fcntl(sock_fd, F_SETFL, fdflags | O_NONBLOCK);
// connect
....
while(1)  {
    int recvlen = recv(sock_fd, recvbuf, RECV_BUF_SIZE) ;
    ......
}
...
由于网络协议非常复杂,内核里面用到了大量的面向对象的技巧,所以我们从创建连接开始,一步一步追述到最后代码的调用点。
socket的创建
很明显,内核的第一步应该是通过AF_INET、SOCK_STREAM以及最后一个参数0定位到需要创建一个TCP的socket,如下图绿线所示:

我们跟踪源码调用
socket(AF_INET, SOCK_STREAM, 0)
	|->sys_socket 进入系统调用
		|->sock_create
			|->__sock_create
进一步分析__sock_create的代码判断:
const struct net_proto_family *pf;
// RCU(Read-Copy Update)是linux的一种内核同步方法,在此不阐述
// family=INET
pf = rcu_dereference(net_families[family]);
err = pf->create(net, sock, protocol);
由于family是AF_INET协议,注意在操作系统里面定义了PF_INET等于AF_INET,
内核通过函数指针实现了对pf(net_proto_family)的重载。如下图所示:

则通过源码可知,由于是AF_INET(PF_INET),所以net_families[PF_INET].create=inet_create(以后我们都用PF_INET表示),即
pf->create = inet_create;
进一步追溯调用:
inet_create(struct net *net, struct socket *sock, int protocol){
	Sock* sock;
	......
	// 此处是寻找对应协议处理器的过程
lookup_protocol:
	// 迭代寻找protocol==answer->protocol的情况
	list_for_each_rcu(p, &inetsw[sock->type]) answer = list_entry(p, struct inet_protosw, list);
		/* Check the non-wild match. */
		if (protocol == answer->protocol) {
			if (protocol != IPPROTO_IP)
				break;
		}
	......
	// 这边answer指的是SOCK_STREAM
	sock->ops = answer->ops;
	answer_no_check = answer->no_check;
	// 这边sk->prot就是answer_prot=>tcp_prot
	sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot);
	sock_init_data(sock, sk);
	......
}
上面的代码就是在INET中寻找SOCK_STREAM的过程了
我们再看一下inetsw[SOCK_STREAM]的具体配置:
static struct inet_protosw inetsw_array[] =
{
	{
		.type =       SOCK_STREAM,
		.protocol =   IPPROTO_TCP,
		.prot =       &tcp_prot,
		.ops =        &inet_stream_ops,
		.capability = -1,
		.no_check =   0,
		.flags =      INET_PROTOSW_PERMANENT |
			      INET_PROTOSW_ICSK,
	},
	......
}
这边也用了重载,AF_INET有TCP、UDP以及Raw三种:

从上述代码,我们可以清楚的发现sock->ops=&inet_stream_ops;
const struct proto_ops inet_stream_ops = {
	.family		   = PF_INET,
	.owner		   = THIS_MODULE,
	......
	.sendmsg	   = tcp_sendmsg,
	.recvmsg	   = sock_common_recvmsg,
	......
}
即sock->ops->recvmsg = sock_common_recvmsg;
同时sock->sk->sk_prot = tcp_prot;
我们再看下tcp_prot中的各个函数重载的定义:
struct proto tcp_prot = {
	.name			= "TCP",
	.close			= tcp_close,
	.connect		= tcp_v4_connect,
	.disconnect		= tcp_disconnect,
	.accept			= inet_csk_accept,
	......
	// 我们重点考察tcp的读
	.recvmsg		= tcp_recvmsg,
	......
}
fcntl控制socket的阻塞\非阻塞状态
我们用fcntl修改socket的阻塞\非阻塞状态。
事实上:
fcntl的作用就是将O_NONBLOCK标志位存储在sock_fd对应的filp结构的f_lags里,如下图所示。

fcntl(sock_fd, F_SETFL, fdflags | O_NONBLOCK);
	|->setfl
追踪setfl代码:
static int setfl(int fd, struct file * filp, unsigned long arg) {
	......
	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
	......
}
上图中,由sock_fd在task_struct(进程结构体)->files_struct->fd_array中找到对应的socket的file描述符,再修改file->flags
在调用socket.recv的时候
我们跟踪源码调用:
socket.recv
	|->sys_recv
		|->sys_recvfrom
			|->sock_recvmsg
				|->__sock_recvmsg
					|->sock->ops->recvmsg
由上文可知:
sock->ops->recvmsg = sock_common_recvmsg;
sock
值得注意的是,在sock_recmsg中,有对标识O_NONBLOCK的处理
	if (sock->file->f_flags & O_NONBLOCK)
		flags |= MSG_DONTWAIT;
上述代码中sock关联的file中获取其f_flags,如果flags有O_NONBLOCK标识,那么就设置msg_flags为MSG_DONTWAIT(不等待)。
fcntl与socket就是通过其共同操作File结构关联起来的。
继续跟踪调用
sock_common_recvmsg
int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
			struct msghdr *msg, size_t size, int flags) {
	......
	// 如果flags的MSG_DONTWAIT标识置位,则传给recvmsg的第5个参数为正,否则为0
	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
				   flags & ~MSG_DONTWAIT, &addr_len);
	.....
}
由上文可知:
sk->sk_prot->recvmsg 其中sk_prot=tcp_prot,即最终调用的是tcp_prot->tcp_recvmsg,
上面的代码可以看出,如果fcntl(O_NONBLOCK)=>MSG_DONTWAIT置位=>(flags & MSG_DONTWAIT)>0,    再结合tcp_recvmsg的函数签名,即如果设置了O_NONBLOCK的话,设置给tcp_recvmsg的nonblock参数>0,关系如下图所示:

最终的调用逻辑tcp_recvmsg
首先我们看下tcp_recvmsg的函数签名:
int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
		size_t len, int nonblock, int flags, int *addr_len)
显然我们关注焦点在(int nonblock这个参数上):
int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
		size_t len, int nonblock, int flags, int *addr_len){
	......
	// copied是指向用户空间拷贝了多少字节,即读了多少
	int copied;
	// target指的是期望多少字节
	int target;
	// 等效为timo = nonblock ? 0 : sk->sk_rcvtimeo;
	timeo = sock_rcvtimeo(sk, nonblock);
	......
	// 如果设置了MSG_WAITALL标识target=需要读的长度
	// 如果未设置,则为最低低水位值
	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
	......
	do{
		// 表明读到数据
		if (copied) {
			// 注意,这边只要!timeo,即nonblock设置了就会跳出循环
			if (sk->sk_err ||
			    sk->sk_state == TCP_CLOSE ||
			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
			    !timeo ||
			    signal_pending(current) ||
			    (flags & MSG_PEEK))
			break;
		}else{
			// 到这里,表明没有读到任何数据
			// 且nonblock设置了导致timeo=0,则返回-EAGAIN,符合我们的预期
			if (!timeo) {
				copied = -EAGAIN;
				break;
		}
		// 这边如果堵到了期望的数据,继续,否则当前进程阻塞在sk_wait_data上
		if (copied >= target) {
			/* Do not sleep, just process backlog. */
			release_sock(sk);
			lock_sock(sk);
		} else
			sk_wait_data(sk, &timeo);
	} while (len > 0);
	......
	return copied
}
上面的逻辑归结起来就是:
(1)在设置了nonblock的时候,如果copied>0,则返回读了多少字节,如果copied=0,则返回-EAGAIN,提示应用重复调用。
(2)如果没有设置nonblock,如果读取的数据>=期望,则返回读取了多少字节。如果没有则用sk_wait_data将当前进程等待。
如下流程图所示:

阻塞函数sk_wait_data
sk_wait_data代码-函数为:
	// 将进程状态设置为可打断INTERRUPTIBLE
	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
	// 通过调用schedule_timeout让出CPU,然后进行睡眠
	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
	// 到这里的时候,有网络事件或超时事件唤醒了此进程,继续运行
	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
	finish_wait(sk->sk_sleep, &wait);
该函数调用schedule_timeout进入睡眠,其进一步调用了schedule函数,首先从运行队列删除,其次加入到等待队列,最后调用和体系结构相关的switch_to宏来完成进程间的切换。
如下图所示:

阻塞后什么时候恢复运行呢
情况1:有对应的网络数据到来
首先我们看下网络分组到来的内核路径,网卡发起中断后调用netif_rx将事件挂入CPU的等待队列,并唤起软中断(soft_irq),再通过linux的软中断机制调用net_rx_action,如下图所示:

注:上图来自PLKA(<<深入Linux内核架构>>)
紧接着跟踪next_rx_action
next_rx_action
	|-process_backlog
		......
			|->packet_type->func 在这里我们考虑ip_rcv
					|->ipprot->handler 在这里ipprot重载为tcp_protocol
						(handler 即为tcp_v4_rcv)
紧接着tcp_v4_rcv:
tcp_input.c
tcp_v4_rcv
	|-tcp_v4_do_rcv
		|-tcp_rcv_state_process
			|-tcp_data_queue
				|-sk->sk_data_ready=sock_def_readable
					|-wake_up_interruptible
						|-__wake_up
							|-__wake_up_common
在这里__wake_up_common将停在当前wait_queue_head_t中的进程唤醒,即状态改为task_running,等待CFS调度以进行下一步的动作,如下图所示。

情况2:设定的超时时间到来
在前面调用sk_wait_event中调用了schedule_timeout
fastcall signed long __sched schedule_timeout(signed long timeout) {
	......
	// 设定超时的回掉函数为process_timeout
	setup_timer(&timer, process_timeout, (unsigned long)current);
	__mod_timer(&timer, expire);
	// 这边让出CPU
	schedule();
	del_singleshot_timer_sync(&timer);
	timeout = expire - jiffies;
 out:
 	// 返回经过了多长事件
	return timeout < 0 ? 0 : timeout;
}
process_timeout函数即是将此进程重新唤醒
static void process_timeout(unsigned long __data)
{
	wake_up_process((struct task_struct *)__data);
}
总结
linux内核源代码博大精深,阅读其代码很费周折。希望笔者这篇文章能帮助到阅读linux网络协议栈代码的人。
公众号
关注笔者公众号,获取更多干货文章:
从linux源码看socket的阻塞和非阻塞的更多相关文章
- 从linux源码看socket(tcp)的timeout
		从linux源码看socket(tcp)的timeout 前言 网络编程中超时时间是一个重要但又容易被忽略的问题,对其的设置需要仔细斟酌.在经历了数次物理机宕机之后,笔者详细的考察了在网络编程(tcp ... 
- 从Linux源码看Socket(TCP)的accept
		从Linux源码看Socket(TCP)的accept 前言 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 今天笔者就从Linux源码的角度看下Serve ... 
- 从Linux源码看Socket(TCP)Client端的Connect
		从Linux源码看Socket(TCP)Client端的Connect 前言 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 今天笔者就来从Linux源码的 ... 
- 从Linux源码看Socket(TCP)的bind
		从Linux源码看Socket(TCP)的bind 前言 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 今天笔者就来从Linux源码的角度看下Server ... 
- 从Linux源码看Socket(TCP)的listen及连接队列
		从Linux源码看Socket(TCP)的listen及连接队列 前言 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 今天笔者就来从Linux源码的角度看 ... 
- 从linux源码看epoll
		从linux源码看epoll 前言 在linux的高性能网络编程中,绕不开的就是epoll.和select.poll等系统调用相比,epoll在需要监视大量文件描述符并且其中只有少数活跃的时候,表现出 ... 
- 从Linux源码看TIME_WAIT状态的持续时间
		从Linux源码看TIME_WAIT状态的持续时间 前言 笔者一直以为在Linux下TIME_WAIT状态的Socket持续状态是60s左右.线上实际却存在TIME_WAIT超过100s的Socket ... 
- Java并发包源码学习系列:基于CAS非阻塞并发队列ConcurrentLinkedQueue源码解析
		目录 非阻塞并发队列ConcurrentLinkedQueue概述 结构组成 基本不变式 head的不变式与可变式 tail的不变式与可变式 offer操作 源码解析 图解offer操作 JDK1.6 ... 
- 【2018.08.13 C与C++基础】网络通信:阻塞与非阻塞socket的基本概念及简单实现
		一.前言 最近在做Matalb/Simulink与C/C++的混合编程,主要是完成TCP.UDP.SerialPort等常见通信方式的中间件设计,为Simulink模型提供数据采集及解析模块. 问题在 ... 
随机推荐
- (数据科学学习手札83)基于geopandas的空间数据分析——geoplot篇(下)
			本文示例代码.数据及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们详细学习了geop ... 
- android 自定义Dialog去除黑色边框
			在自定义Dialog时显示的界面中老是有黑色的边框,下面就介绍使用style去除黑色边框方法. 首先在values/styles定义自定义样式: <style name="MyDial ... 
- (Python基础教程之八)Python中的list操作
			Python基础教程 在SublimeEditor中配置Python环境 Python代码中添加注释 Python中的变量的使用 Python中的数据类型 Python中的关键字 Python字符串操 ... 
- 基于 abp vNext 和 .NET Core 开发博客项目 - 数据访问和代码优先
			上一篇文章(https://www.cnblogs.com/meowv/p/12909558.html)完善了项目中的代码,接入了Swagger.本篇主要使用Entity Framework Core ... 
- 从零开始实现ASP.NET Core MVC的插件式开发(七) - 近期问题汇总及部分解决方案
			标题:从零开始实现ASP.NET Core MVC的插件式开发(七) - 问题汇总及部分解决方案 作者:Lamond Lu 地址:https://www.cnblogs.com/lwqlun/p/12 ... 
- F. Machine Learning 带修端点莫队
			F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ... 
- Getting Started With Node and NPM
			Getting Started with Node and NPM Let's start with the basics. Install Node.js: https://nodejs.org. 
- Pyqt5_QLabel
			QLabel 作用 方法 信号 作用 占位符.显示文本.显示图片.放置gif动画.超链接.提示标记 方法 setAlignment() 按固定值方式对齐文本 Qt.AlignLeft:水平方向靠左对齐 ... 
- 程序员都在用的 IDEA 插件(不断更新)
			IDEA一些不错的插件分享 目录 IDEA一些不错的插件分享 插件集合 CamelCase Translation LiveEdit MarkDown Navigator Jrebel CheckSt ... 
- SPL常用迭代器
			ArrayIterator 熟悉使用seek()跳过元素 熟悉使用asort,ksort排序 <?php $fruits = array( 'apple'=>'apple value', ... 
