一开始我还天真的一遍DFS求出最长链以为就可以了

不过发现存在有向环,即强连通分量SCC,有向环里的每个点都是可比的,都要分别给个集合才行,最后应该把这些强连通分量缩成一个点,最后保证图里是 有向无环图才行,这个时候再找最长链,当然缩点之后的scc是有权值的,不能只看成1,缩点完了之后,用记忆化搜索DP就可以再On的复杂度内求出结果

所以现学了一下SCC-Tarjan,所谓Scc-tarjan,就是找到强连通分量并且缩点,特别好用,其原理就是利用dfs时间戳,每个点有自己的时间戳,同时再开一个记录通过孩子的路径能指向的最上边的节点的时间戳,lowlink,如果当前lowlink就等于自己,即找到了强连通分量,并且找到了最大的头头。所以一个点也是强连通分量

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack>
using namespace std;
const int N = ;
stack<int> sta;
vector <int> G[N];
vector <int> G4[N];
int vis[N];
int n,m;
int pre[N],lowlink[N],sccno[N],w[N],dfs_clk,scc_cnt;
int dp[N];
void init()
{
dfs_clk=scc_cnt=;
for (int i=;i<=n;i++){
G[i].clear();
pre[i]=;
lowlink[i]=;
sccno[i]=;
vis[i]=;
w[i]=;
G4[i].clear();
}
}
void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_clk;
sta.push(u);
for (int i=;i<G[u].size();i++){
int v=G[u][i];
if (!pre[v]){
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if (!sccno[v]){
lowlink[u]=min(lowlink[u],pre[v]);
}
}
if (lowlink[u]==pre[u]){
scc_cnt++;
for (;;){
int x=sta.top();sta.pop();
sccno[x]=scc_cnt;
w[scc_cnt]++;
if (x==u) break;
}
}
}
void tarjan()
{
for (int i=;i<=n;i++){
if (!pre[i]) dfs(i);
}
}
void calc(int u)
{
if (dp[u]!=-) return;
dp[u]=w[u];
int now=w[u];
for (int j=;j<G4[u].size();j++){
int v=G4[u][j];
calc(v);
dp[u]=max(dp[u],dp[v]+now);
}
}
void solve()
{
for (int i=;i<=n;i++){
int u=sccno[i];
for (int j=;j<G[i].size();j++){
int v=sccno[G[i][j]];
if (u!=v) G4[u].push_back(v);
}
}
for (int i=;i<=scc_cnt;i++){
dp[i]=-;
}
for (int i=;i<=scc_cnt;i++){
calc(i);
}
int ans=;
for (int i=;i<=scc_cnt;i++){
ans=max(ans,dp[i]);
}
printf("%d\n",ans);
}
int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
init();
int a,b;
while (m--)
{
scanf("%d%d",&a,&b);
G[a].push_back(b);
}
tarjan();
solve();
}
return ;
}

ZOJ 3795 Grouping 强连通分量-tarjan的更多相关文章

  1. ZOJ 3795 Grouping (强连通缩点+DP最长路)

    <题目链接> 题目大意: n个人,m条关系,每条关系a >= b,说明a,b之间是可比较的,如果还有b >= c,则说明b,c之间,a,c之间都是可以比较的.问至少需要多少个集 ...

  2. 强连通分量(tarjan求强连通分量)

    双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: #include <iostream> #include <cstd ...

  3. zoj 3795 Grouping tarjan缩点 + DGA上的最长路

    Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit Status Practic ...

  4. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  5. POJ2186 Popular Cows 强连通分量tarjan

    做这题主要是为了学习一下tarjan的强连通分量,因为包括桥,双连通分量,强连通分量很多的求法其实都可以源于tarjan的这种方法,通过一个low,pre数组求出来. 题意:给你许多的A->B ...

  6. ZOJ 3795 Grouping

    大致题意是给n个人和m组关系,每组关系都是两个人s和t,表示s年龄不小于t的年龄,然后让你把这n个人分组,使得任何一个组里面的任意两人都不能直接或间接的得出这两个人的年龄大小关系. 思路:根据给出的关 ...

  7. [有向图的强连通分量][Tarjan算法]

    https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...

  8. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  9. 强连通分量tarjan缩点——POJ2186 Popular Cows

    这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...

随机推荐

  1. smoj2806建筑物

    题面 有R红色立方体,G绿色立方体和B蓝色立方体.每个立方体的边长是1.现在有一个N × N的木板,该板被划分成1×1个单元.现在要把所有的R+G+B个立方体都放在木板上.立方体必须放置在单元格内,单 ...

  2. Lesson 9 Royal espionage

    What important thing did King Alfred learn when he penetrated the Danish camp of Guthrum? Alfred the ...

  3. JuJu团队1月10号工作汇报

    JuJu团队1月10号工作汇报 JuJu   Scrum 团队成员 今日工作 剩余任务 困难 飞飞 fix出现的bug -- 无 婷婷 完善main.jl 训练流程 -- 无 恩升 绘图 -- 无 金 ...

  4. 等级保护2.0-mysql

    控制点 安全要求 要求解读 测评方法 预期结果或主要证据 身份鉴别 a)应对登录的用户进行身份标识和鉴别,身份标识具有唯一性,身份鉴别信息具有复杂度要求并定期更换 应检查MySQL数据库的口令策略配置 ...

  5. 组态DP主站与标准从站的步骤

    分为以下几个部分 第一:组态DP主站与标准从站 分为以下几个步骤 步骤1: 将标准从站ET200 ,ET200在硬件组态软件界面的最右边的PROFIBUS-DP界面里面, PROFIBUS-DP里面是 ...

  6. jQuery Validation Engine(三) 基本常识

    1:response.validateFail(fieldId, "机构英文名已被其他人使用"); //field为这个字段的id,”“ 双引号的内容,是提示语 <!DOCT ...

  7. 新闻网大数据实时分析可视化系统项目——12、Hive与HBase集成进行数据分析

    (一)Hive 概述 (二)Hive在Hadoop生态圈中的位置 (三)Hive 架构设计 (四)Hive 的优点及应用场景 (五)Hive 的下载和安装部署 1.Hive 下载 Apache版本的H ...

  8. Zookeeper集群搭建(单机多节点,伪集群,docker-compose集群)

    Zookeeper介绍 原理简介 ZooKeeper是一个分布式的.开源的分布式应用程序协调服务.它公开了一组简单的原语,分布式应用程序可以在此基础上实现更高级别的同步.配置维护.组和命名服务.它的设 ...

  9. VirtualBox安装Debian

    1.下载Debian的dvd1,按照http://www.jb51.net/os/85858.html网上教程安装Debian 1.1.我创建了20G的虚拟磁盘,分区的时候我分了3个区,2G交换空间, ...

  10. 原生JS获取所有标签的数量并统计每个标签的数量

    <script type="text/javascript"> var tags = document.getElementsByTagName('*'); var t ...