一、岭回归模型

  岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ

二、如何调用

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto')

alpha:就是上述正则化参数λ;
fit_intercept:默认为true,数据可以拦截,没有中心化;
normalize:输入的样本特征归一化,默认false;
copy_X:复制或者重写;
max_iter:最大迭代次数;
tol: 控制求解的精度;
solver:求解器,有auto, svd, cholesky, sparse_cg, lsqr几种,一般我们选择auto,一些svd,cholesky也都是稀疏表示中常用的omp求解算法中的知识,大家有时间可以去了解。

Ridge函数会返回一个clf类,里面有很多的函数,一般我们用到的有:
clf.fit(X, y):输入训练样本数据X,和对应的标记y;
clf.predict(X):利用学习好的线性分类器,预测标记,一般在fit之后调用;
clf.corf_: 输入回归表示系数

详见:

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge.decision_function

三、Lasso模型(Least absolute shrinkage and selection operator-最小绝对收缩与选择算子)

  Lasso构造的是一个一阶的惩罚函数,满足L1范数,从而使得模型的一些变量参数可能为0(岭回归系数为0的可能性非常低),得到的模型更为精炼。

  Lasso的正则化惩罚函数形式是L1范数,属于绝对值形式,L1范数的好处是当lambda充分大时可以把某些待估参数精确地收缩到0。回归的参数估计经常会有为0的状况,对于这种参数,我们便可以选择对它们进行剔除,就不用我们进行人工选择剔除变量,而可以让程序自动根据是否为0来剔除掉变量了。剔除了无用变量后,可能会使的模型效果更好,因为会存在一些关联比较大的共线变量,从这个角度来看,Lasso回归要优于岭回归。

  scikit-learn对lasso模型的调用与上述岭回归调用大同小异,详见:

  http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

scikit-learn中的岭回归(Ridge Regression)与Lasso回归的更多相关文章

  1. 岭回归(Ridge Regression)

    一.一般线性回归遇到的问题 在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在: 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量 时,最小二乘回归会有较小的方差 时, ...

  2. 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是 ...

  3. ISLR系列:(4.2)模型选择 Ridge Regression & the Lasso

    Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. 线性回归大结局(岭(Ridge)、 Lasso回归原理、公式推导),你想要的这里都有

    本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ..., ...

  6. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  7. Jordan Lecture Note-4: Linear & Ridge Regression

    Linear & Ridge Regression 对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y ...

  8. 多元线性回归模型的特征压缩:岭回归和Lasso回归

    多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...

  9. L1,L2范数和正则化 到lasso ridge regression

    一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表 ...

  10. 机器学习:模型泛化(LASSO 回归)

    一.基础理解 LASSO 回归(Least Absolute Shrinkage and Selection Operator Regression)是模型正则化的一定方式: 功能:与岭回归一样,解决 ...

随机推荐

  1. 每天网络半小时(MAC数据包在哪里合并的)

    ip_deliver_local函数中函数中完成合并 听过netfilter框架中也会 因为net_filter框架需要感知到第四层的信息,但是单个数据包是无法感知到这些信息的,所以需要在netfil ...

  2. [剑指Offer] 54.字符流中的第一个不重复的字符

    题目描述 请实现一个函数用来找出字符流中第一个只出现一次的字符.例如,当从字符流中只读出前两个字符"go"时,第一个只出现一次的字符是"g".当从该字符流中读出 ...

  3. SQL局部变量

    声明局部变量 局部变量的声明需要使用declare 语句.并且必须以@开头 declare { @varaible_name datatype[,...n] } varaible_name :局部变量 ...

  4. springBoot @EnableAutoConfiguration深入分析

    1.新建一个项目中需要提供配置类 2.在META-INF/spring.factorties在文件中配置 org.springframework.boot.autoconfigure.EnableAu ...

  5. [洛谷P4980]【模板】Polya定理

    题目大意:给一个$n$个点的环染色,有$n$中颜色,问有多少种涂色方案是的旋转后本质不同 题解:$burnside$引理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}A_ ...

  6. 【CKplayer】使用CKplayer插件在网页中嵌入视频的方法

    在做网站中有时候我们需要在网页中嵌入视频,一般视频嵌入有以下几种方法: 1. 优酷代码嵌入 优点:简单,方便,可靠. 缺点:有广告,现在的网站非常注重用户体验,如果打开一个在线视频是有长广告的一定会崩 ...

  7. HDU4812 D tree 【点分治 + 乘法逆元】

    D树 时间限制:10000/5000 MS(Java / Others)内存限制:102400/102400 K(Java / Others) 总共提交5400个已接受的提交1144 问题描述 南京理 ...

  8. bzoj1778: [Usaco2010 Hol]Dotp 驱逐猪猡(概率DP+高斯消元)

    深夜肝题...有害身心健康QAQ 设f[i]为到达i的概率,d[i]为i的度数. 因为无限久之后炸弹爆炸的概率是1,所以最后在i点爆炸的概率实际上就是f[i]/sigma(f[]) 列出方程组 f[i ...

  9. eclipse ----- indexer

    使能indexer,可以实现变量.函数等的跳转, 即跳转到定义的位置

  10. git版本回退与撤销操作

    场景1:当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时,用命令git checkout -- file. 场景2:当你不但改乱了工作区某个文件的内容,还添加到了暂存区时,想丢弃修改,分两步, ...