【刷题】BZOJ 2179 FFT快速傅立叶
Description
给出两个n位10进制整数x和y,你需要计算x*y。
Input
第一行一个正整数n。 第二行描述一个位数为n的正整数x。 第三行描述一个位数为n的正整数y。
Output
输出一行,即x*y的结果。
Sample Input
1
3
4
Sample Output
12
数据范围:
n<=60000
Solution
水体一道
把一个数变化一下, \(\overline {xyz}=x*10^2+y*10^1+z*10^0\) ,就是一个多项式形式了
两个数相乘,多项式相乘,FFT
然后处理进位就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1<<19;
const db Pi=acos(-1.0);
int n,m,qn,rev[MAXN],cnt,ans[MAXN];
char s1[MAXN],s2[MAXN];
struct Complex{
db real,imag;
inline Complex operator + (const Complex &A) const {
return (Complex){real+A.real,imag+A.imag};
};
inline Complex operator - (const Complex &A) const {
return (Complex){real-A.real,imag-A.imag};
};
inline Complex operator * (const Complex &A) const {
return (Complex){real*A.real-imag*A.imag,imag*A.real+real*A.imag};
};
};
Complex x[MAXN],y[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void FFT(Complex *A,int tp)
{
for(register int i=0;i<n;++i)
if(i<rev[i])std::swap(A[i],A[rev[i]]);
for(register int l=2;l<=n;l<<=1)
{
Complex wn=(Complex){cos(2*Pi/l),sin(tp*2*Pi/l)};
for(register int i=0;i<n;i+=l)
{
Complex w=(Complex){1,0};
for(register int j=0;j<(l>>1);++j)
{
Complex A1=A[i+j],A2=w*A[i+j+(l>>1)];
A[i+j]=A1+A2,A[i+j+(l>>1)]=A1-A2;
w=w*wn;
}
}
}
}
int main()
{
read(qn);
scanf("%s",s1);scanf("%s",s2);
for(register int i=0;i<qn;++i)x[qn-i-1].real=s1[i]-'0';
for(register int i=0;i<qn;++i)y[qn-i-1].real=s2[i]-'0';
m=qn+qn-1;
for(n=1;n<m;n<<=1)cnt++;
for(register int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(cnt-1));
FFT(x,1);FFT(y,1);
for(register int i=0;i<n;++i)x[i]=x[i]*y[i];
FFT(x,-1);
int ps=0;
for(register int i=m-1;i>=0;--i)
if((int)(x[i].real/n+0.5)!=0)
{
ps=i;
break;
}
for(register int i=ps;i>=0;--i)ans[i]=(int)(x[i].real/n+0.5);
for(register int i=0;i<ps;++i)ans[i+1]+=ans[i]/10,ans[i]%=10;
for(register int i=ps;i>=0;--i)write(ans[i]);
puts("");
return 0;
}
【刷题】BZOJ 2179 FFT快速傅立叶的更多相关文章
- BZOJ 2179: FFT快速傅立叶
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2923 Solved: 1498[Submit][Status][Di ...
- bzoj 2179: FFT快速傅立叶 -- FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...
- BZOJ 2179 FFT快速傅立叶 题解
bzoj 2179 Description 给出两个n位10进制整数x和y,你需要计算x*y. [题目分析] 高精裸题.练手. [代码] 1.手动高精 #include<cstdio> # ...
- bzoj 2179 FFT快速傅立叶 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream& ...
- BZOJ 2179 FFT快速傅立叶 ——FFT
[题目分析] 快速傅里叶变换用于高精度乘法. 其实本质就是循环卷积的计算,也就是多项式的乘法. 两次蝴蝶变换. 二进制取反化递归为迭代. 单位根的巧妙取值,是的复杂度成为了nlogn 范德蒙矩阵计算逆 ...
- 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3308 Solved: 1720 Description 给出两个n位 ...
- 【BZOJ】2179: FFT快速傅立叶(fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=2179 fft裸题.... 为嘛我的那么慢....1000多ms.. #include <cst ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- 【BZOJ2179】FFT快速傅立叶
[BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...
随机推荐
- Kafka在高并发的情况下,如何避免消息丢失和消息重复?kafka消费怎么保证数据消费一次?数据的一致性和统一性?数据的完整性?
1.kafka在高并发的情况下,如何避免消息丢失和消息重复? 消息丢失解决方案: 首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的 ...
- vim 打造IDE
1.MinBufExplorer 2.Ctags Ctags工具是用来遍历源代码文件生成tags文件,这些tags文件能被编辑器或其它工具用来快速查找定位源代码中的符号(tag/symbol),如变量 ...
- C# 终本案件、综合执行人、裁判文书爬虫
终本案件:http://zxgk.court.gov.cn/zhongben/new_index.html 综合执行人:http://zxgk.court.gov.cn/zhixing/new_ind ...
- dva webpack 利用require.context加载多个model
dva redux数据管理都在models,根据业务不同models可能会有几十甚至上百的 [模块.js], 每次在index.js使用 app.model(require('./models/exa ...
- Python 多线程、进程、协程上手体验
浅谈 Python 多线程.进程.协程上手体验 前言:浅谈 Python 很多人都认为 Python 的多线程是垃圾(GIL 说这锅甩不掉啊~):本章节主要给你体验下 Python 的两个库 Thre ...
- UniMelb Comp30022 IT Project (Capstone) - 1.Android入门
1. Android入门 Android系统架构 Android系统:四层架构.五块区域 1. Linux内核层 Linux Kernel:为Android设备的硬件提供了底层驱动 2. 系统运行库层 ...
- system_Class类说明文档
system_Class类是FastCMS系统必须的,全局对象system是system_Class的实例,其主要包含二类操作: 1.token 操作: token可以存储当前访客的私有信息,取代se ...
- Python全栈 MongoDB 数据库(Mongo、 正则基础、一篇通)
终端命令: 在线安装: sudo apt-get install mongodb 默认安装路径 : /var/lib/mong ...
- JS原型链与继承别再被问倒了
原文:详解JS原型链与继承 摘自JavaScript高级程序设计: 继承是OO语言中的一个最为人津津乐道的概念.许多OO语言都支持两种继承方式: 接口继承 和 实现继承 .接口继承只继承方法签名,而实 ...
- JavaScript 作用域链范例
函数在执行的过程中,先从自己内部找变量 如果找不到,再从创建当前函数所在的作用域去找,以此往上 注意找的是变量的当前状态 范例 例1 var a=1 function fn1() { function ...