[CF613D]Kingdom and its Cities
description
data range
\]
solution
还是虚树的练手题
\(f[0/1][u]\)表示\(u\)的子树内,\(u\)是否和重要城市连通的最小分割代价
分类讨论有点捉急
code
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define FILE "a"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=998244353;
const int N=2000010;
const dd pi=acos(-1);
const int inf=2147483645;
const ll INF=1e18+1;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
}
int n,m,q,k;
int head[N],nxt[N<<1],to[N<<1],cnt;
int dhead[N],dnxt[N<<1],dto[N<<1],dcnt;
il void addedge(int u,int v){
dto[++dcnt]=v;
dnxt[dcnt]=dhead[u];
dhead[u]=dcnt;
}
int fa[N],dep[N],sz[N],son[N],top[N],dfn[N],low[N],tot;
void dfs1(int u,int ff){
fa[u]=ff;dep[u]=dep[ff]+1;sz[u]=1;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==ff)continue;
dfs1(v,u);sz[u]+=sz[v];
if(sz[son[u]]<sz[v])son[u]=v;
}
}
void dfs2(int u,int tp){
top[u]=tp;dfn[u]=++tot;
if(son[u])dfs2(son[u],tp);
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==fa[u]||v==son[u])continue;
dfs2(v,v);
}
low[u]=++tot;
}
il int lca(int u,int v){
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]])swap(u,v);
u=fa[top[u]];
}
return dep[u]<dep[v]?u:v;
}
int mark[N],s[N],cal[N],tp,flg;
bool cmp_dfn(int i,int j){return dfn[i]<dfn[j];}
int f[2][N];
void solve(int u){
f[0][u]=f[1][u]=inf;
RG int sum=0;
if(mark[u]){
for(RG int i=dhead[u];i;i=dnxt[i]){
RG int v=dto[i];solve(v);
sum+=min(f[0][v],f[1][v]+1);
}
f[1][u]=sum;
}
else{
RG int mx=0,tot=0;
for(RG int i=dhead[u];i;i=dnxt[i]){
RG int v=dto[i];solve(v);
sum+=min(f[0][v],f[1][v]);
if(f[0][v]>f[1][v])mx=1;
}
f[0][u]=sum+mx;
mx=tot=sum=0;
for(RG int i=dhead[u];i;i=dnxt[i]){
RG int v=dto[i];
sum+=min(f[0][v],f[1][v]+1);
if(dep[u]==dep[v]-1&&mark[v])tot++;
else if(f[0][v]>=f[1][v]+1)mx=1;
}
if(tot==1)f[1][u]=sum-1;
else if(!tot&&mx)f[1][u]=sum-1;
}
}
int main()
{
n=read();
for(RG int i=1,u,v;i<n;i++){
u=read();v=read();
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
to[++cnt]=u;nxt[cnt]=head[v];head[v]=cnt;
}
dfs1(1,0);dfs2(1,1);
q=read();
for(RG int i=1;i<=q;i++){
m=read();tp=k=dcnt=flg=0;
for(RG int j=1;j<=m;j++)s[++k]=read(),mark[s[k]]=1;
sort(s+1,s+k+1,cmp_dfn);
for(RG int j=1;j<m;j++)s[++k]=lca(s[j],s[j+1]);s[++k]=1;
sort(s+1,s+k+1,cmp_dfn);k=unique(s+1,s+k+1)-s-1;
for(RG int j=1;j<=k;j++){
while(tp&&low[cal[tp]]<dfn[s[j]])tp--;
if(tp){
if(dep[cal[tp]]==dep[s[j]]-1&&mark[cal[tp]]&&mark[s[j]])
flg=1;
addedge(cal[tp],s[j]);
}
cal[++tp]=s[j];
}
if(!flg){solve(1);printf("%d\n",min(f[0][1],f[1][1]));}
else puts("-1");
for(RG int j=1;j<=k;j++)mark[s[j]]=dhead[s[j]]=0;
}
return 0;
}
[CF613D]Kingdom and its Cities的更多相关文章
- CF613D Kingdom and its Cities 虚树 树形dp 贪心
LINK:Kingdom and its Cities 发现是一个树上关键点问题 所以考虑虚树刚好也有标志\(\sum k\leq 100000\)即关键点总数的限制. 首先当k==1时 答案显然为0 ...
- CF613D Kingdom and its Cities 虚树
传送门 $\sum k \leq 100000$虚树套路题 设$f_{i,0/1}$表示处理完$i$以及其所在子树的问题,且处理完后$i$所在子树内是否存在$1$个关键点满足它到$i$的路径上不存在任 ...
- CF613D:Kingdom and its Cities(树形DP,虚树)
Description 一个王国有n座城市,城市之间由n-1条道路相连,形成一个树结构,国王决定将一些城市设为重要城市. 这个国家有的时候会遭受外敌入侵,重要城市由于加强了防护,一定不会被占领.而非重 ...
- CF613D Kingdom and its Cities 虚树 + 树形DP
Code: #include<bits/stdc++.h> #define ll long long #define maxn 300003 #define RG register usi ...
- CF613D Kingdom and its Cities(虚树+贪心)
很休闲的一个题啊 其实一看到关于\(\sum k\)的限制,就知道是个虚树的题了 首先我们把虚树建出来,然后考虑怎么计算个数呢? 我们令\(f[x]\)表示以\(x\)的子树中,剩余了多少个还没有切断 ...
- 【CF613D】Kingdom and its Cities 虚树+树形DP
[CF613D]Kingdom and its Cities 题意:给你一棵树,每次询问给出k个关键点,问做多干掉多少个非关键点才能使得所有关键点两两不连通. $n,\sum k\le 10^5$ 题 ...
- 【CF613D】Kingdom and its Cities
[CF613D]Kingdom and its Cities 题面 洛谷 题解 看到关键点当然是建虚树啦. 设\(f[x]\)表示以\(x\)为根的子树的答案,\(g[x]\)表示以\(x\)为根的子 ...
- 【CF613D】Kingdom and its Cities(虚树,动态规划)
[CF613D]Kingdom and its Cities(虚树,动态规划) 题面 洛谷 CF 翻译洛谷上有啦 题解 每次构建虚树,首先特判无解,也就是关键点中存在父子关系. 考虑\(dp\),设\ ...
- Kingdom and its Cities - CF613D
Meanwhile, the kingdom of K is getting ready for the marriage of the King's daughter. However, in or ...
随机推荐
- OSG的组成结构
OSG的组成结构 核心结构 OSG的功能类采用“命名空间+类名称”的形式来命名.命名空间的命名方式为:第一个单词小写,后继单词的首字母大写,例如osg.osgUtil.osgViewer等:类的名称则 ...
- 交换学生 (Foreign Exchange,UVa10763)
题目描述: 解题思路: 开一个数组,读入一次交换两个数,如果最后数组不变,即符合匹配 #include<iostream> #include<cstdio> #include& ...
- [Clr via C#读书笔记]Cp18 定制Attribute
Cp18 定制Attribute 意义 利用Attribute,可以声明性的给自己的代码结构创建注解,从而实现一些特殊的功能:最终在元数据中生成,这种可扩展的元数据信息可以在运行时的时候查询,从而动态 ...
- 幸运的袋子(深度优先遍历(Depth First Search,DFS))
题目描述 一个袋子里面有n个球,每个球上面都有一个号码(拥有相同号码的球是无区别的).如果一个袋子是幸运的当且仅当所有球的号码的和大于所有球的号码的积. 例如:如果袋子里面的球的号码是{1, 1, 2 ...
- SpringBoot在IntelliJ IDEA下for MAC 热加载
说在前面 热加载:文件内容变更服务器自动运行最新代码.实则在IDEA环境进行热部署后,下述过程一气呵成. 1代码变更,文件自动保存(IDEA自动保存代码,用户无需使用COMMAND+SAVE快捷键): ...
- 软件工程 作业part1
自我介绍 老师您好,我叫宋雨,本科在长春理工大学,专业是计算机科学与技术. 1.回想一下你曾经对计算机专业的畅想:当初你是如何做出选择计算机专业的决定?你认为过去接触的课程是否符合你对计算机专业的期待 ...
- MyBatis传入参数为list、数组、map写法(转载)
MyBatis传入参数为list.数组.map写法 1.foreach简单介绍: foreach的主要用在构建in条件中,它可以在SQL语句中进行迭代一个集合. foreach元素的属性主要有item ...
- UVALive - 6856 Circle of digits 后缀数组+二分
题目链接: http://acm.hust.edu.cn/vjudge/problem/82135 Circle of digits Time Limit: 3000MS 题意 把循环串分割成k块,让 ...
- iOS AVAudioPlayer播放音频时声音太小
iOS AVAudioPlayer播放音频时声音太小 //引入AVFoundation类库,设置播放模式就可以了 do { try AVAudioSession.sharedInstance().ov ...
- JDK源码分析 – LinkedList
LinkedList类的申明 public class LinkedList<E> extends AbstractSequentialList<E> implements L ...