Agri-Net(最小生成树)
Description
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.
Input
Output
Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
Sample Output
28 题目意思:农场需要拉互联网来相通,给出了n个农场之间需要连通成本的邻接矩阵,求出所需要的最小成本即最小生成树。 \\\克鲁斯卡尔算法
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,sum;
int k;
struct node
{
int start;///起点
int end;///终点
int power;///权值
}edge[150*150];
int pre[150*150];
int cmp(node a,node b)
{
return a.power<b.power;///按权值排序
}
int find(int x)///并查集找祖先
{
int a;///循环法
a=x;
while(pre[a]!=a)
{
a=pre[a];
}
return a;
}
void merge(int x,int y,int n)
{
int fx =find(x);
int fy =find(y);
if(fx!=fy)
{
pre[fx]=fy;
sum+=edge[n].power;
}
}
int main()
{
int i,j,x;
while(scanf("%d",&n)!=EOF)
{
if(n==0)
{
break;
}
sum=0;
k=1;
for(i=1;i<=n;i++)///并查集的初始化
{
pre[i]=i;
}
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&x);
edge[k].start=i;
edge[k].end=j;
edge[k].power=x;
k++;
}
}
k--;
sort(edge+1,edge+k+1,cmp);
for(i=1;i<=k;i++)
{
merge(edge[i].start,edge[i].end,i);
}
printf("%d\n",sum);
}
return 0;
}
\\\普里姆算法
#include<stdio.h>
#include<string.h>
#define MAX 0x3f3f3f3f
using namespace std;
int logo[150*150];///用0和1来表示是否被选择过
int map1[150][150];
int dis[150*150];///记录任意一点到这一点的最近的距离
int n,m;
int prim()
{
int i,j,now;
int sum=0;
for(i=1;i<=n;i++)///初始化
{
dis[i]=MAX;
logo[i]=0;
}
for(i=1;i<=n;i++)
{
dis[i]=map1[1][i];
}
dis[1]=0;
logo[1]=1;
for(i=1;i<n;i++)///循环查找
{
now=MAX;
int min1=MAX;
for(j=1;j<=n;j++)
{
if(logo[j]==0&&dis[j]<min1)
{
now=j;
min1=dis[j];
}
}
if(now==MAX)///防止不成图
{
break;
}
logo[now]=1;
sum=sum+min1;
for(j=1;j<=n;j++)///填入新点后更新最小距离,到顶点集的距离
{
if(logo[j]==0&&dis[j]>map1[now][j])
{
dis[j]=map1[now][j];
}
}
} printf("%d\n",sum);
}
int main()
{
int i,j,x;
while(scanf("%d",&n)!=EOF)///n是点数
{
if(n==0)
{
break;
}
memset(map1,0x3f3f3f3f,sizeof(map1));///map是邻接矩阵储存图的信息
for(i=1;i<=n;i++)
{ for(j=1;j<=n;j++)
{
scanf("%d",&x);
map1[i][j]=x;
}
}
prim();
}
return 0;
}
Agri-Net(最小生成树)的更多相关文章
- 最小生成树(Kruskal算法-边集数组)
以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...
- 最小生成树计数 bzoj 1016
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...
- poj 1251 Jungle Roads (最小生成树)
poj 1251 Jungle Roads (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...
- 【BZOJ 1016】【JSOI 2008】最小生成树计数
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明). ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- Delaunay剖分与平面欧几里得距离最小生成树
这个东西代码我是对着Trinkle的写的,所以就不放代码了.. Delaunay剖分的定义: 一个三角剖分是Delaunay的当且仅当其中的每个三角形的外接圆内部(不包括边界)都没有点. 它的存在性是 ...
- 最小生成树(prim&kruskal)
最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法: 原始的加权连通图——————D被选作起点,选与之相连的权值 ...
- 最小生成树 prime poj1258
题意:给你一个矩阵M[i][j]表示i到j的距离 求最小生成树 思路:裸最小生成树 prime就可以了 最小生成树专题 AC代码: #include "iostream" #inc ...
- 最小生成树 prime + 队列优化
存图方式 最小生成树prime+队列优化 优化后时间复杂度是O(m*lgm) m为边数 优化后简直神速,应该说对于绝大多数的题目来说都够用了 具体有多快呢 请参照这篇博客:堆排序 Heapsort / ...
- 最小生成树 prime poj1287
poj1287 裸最小生成树 代码 #include "map" #include "queue" #include "math.h" #i ...
随机推荐
- 动态树LCT(Link-cut-tree)总结+模板题+各种题目
一.理解LCT的工作原理 先看一道例题: 让你维护一棵给定的树,需要支持下面两种操作: Change x val: 令x点的点权变为val Query x y: 计算x,y之间的唯一的最短路径的点 ...
- Visual Studio中添加API断点
如:添加 PostMessageA 断点 {,,USER32.DLL}_PostMessageA@16 //判断为WM_CLOSE消息*(int*)(esp + 8) == 0x0010
- Python Monitoring UPS with SNMPWALK
##Background My co-worker told me he needed to monitor UPS with SNMP module but he only can get hexa ...
- sublime text3配置python开发环境(windows版)
安装阶段: sublime text3的安装: 下载网址:https://www.sublimetext.com/ 下载完成后 ,点击安装即可. 安装Package Control: 点击 Tools ...
- css:url链接去下划线+点击前黑色+点击时灰色+点击后黑色
一般的文章列表 加了样式之后的效果 附上css代码 /*点击前*/ a:link{ color: black; } /*点击后*/ a:visited{ color: black; } /*点击时*/ ...
- vue调用豆瓣API加载图片403问题
"豆瓣API是有请求次数限制的”,这会引发图片在加载的时候出现403问题,视图表现为“图片加载不出来”,控制台表现为报错403. 其实是豆瓣限制了图片的加载,我自己用了一个办法把图片缓存下来 ...
- vue-cli项目使用axios实现登录拦截
登录拦截 一.路由拦截 项目中某些页面需要用户登录后才可以访问,在路由配置中添加一个字段requireAuth 在router/index.js中 . const router = new Route ...
- 大数据&人工智能&云计算
仅从技术上讲大数据.人工智能都包含工程.算法两方面内容: 一.大数据: 工程: 1)云计算,核心是怎么管理大量的计算机.存储.网络. 2)核心是如何管理数据:代表是分布式存储,HDFS 3)核心是如何 ...
- ES基础知识与高频考点梳理
知识点梳理目录列表 变量类型 JS的数据类型分类和判断 值类型和引用类型 原型与原型链(继承) 原型和原型链的定义 继承写法 作用域和闭包 执行上下文 this 闭包是什么 异步 同步VS异步 异步和 ...
- ruby语言里的self理解
关键的一句话:关键看谁调用self,self就属于谁 有3种情况: 1.在class或module的定义中,self代表这个class或者这个module对象,代码如下: class S puts ' ...